Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Vremenske napovedi - prof. dr. Jože Rakovec

09.02.2012


Večino meritev za napovedovanje vremena zberemo ob pomoči umetnih satelitov, ki krožijo okoli Zemlje.

A tu se stvari šele začnejo: zbrane podatke je treba vključiti v računalniški model, kritično ovrednotiti rezultate računanja z velikimi računalniškimi gručami in šele nekje čisto na koncu tudi povzeti v vsem razumljiv jezik.

Današnja meteorologija je torej tesno povezana z vesoljsko tehnologijo in naprednim računalništvom.

Velik del vsakdanjega poganjanja računalniških gruč na fakulteti za matematiko in fiziko in seveda na Agenciji za okolje je namenjen preračunavanju vremenskih napovedi. Vremensko dogajanje je znano po nepredvidljivosti, zato je predmet intenzivnih mednarodnih raziskav.

Za uspešno napoved je treba najprej poznati zakonitosti, ki uravnavajo dogajanje v ozračju. Potem je treba znati te zakonitosti tako napisati v obliki enačb, da rešitve povedo, kako se bodo temperatura, vlažnost zraka, zračni tlak, veter, oblačnost itn. v vsaki točki ozračja spreminjali s časom. Če to poznamo, poznamo tudi vrednosti vremenskih spremenljivk v vsaki točki ozračja za več dni vnaprej. Toda do tod je kar naporna in dolga pot.

Za začetek moramo vedeti, kakšne so razmere takrat, ko začnemo računanje. To ugotovimo z meritvami. Ker pa se vreme dogaja predvsem tam zgoraj, to pomeni, da moramo meriti po vsem ozračju okoli in okoli Zemlje, od tal pa do 20 ali 30 km nad njimi. Izmerjene podatke je treba tudi medsebojno uskladiti, saj so npr. vzrok za veter razlike zračnega tlaka med kraji: čim večje so, tem močnejši so vetrovi.

Po drugi strani pa vetrovi prenašajo zračne mase sem in tja; s tem se ponekod nakopiči več zraka, zato se zračni tlak poveča, drugod pa je zraka manj in je tlak nižji. In če se slučajno zgodi, da prostorska razporeditev zračnega tlaka in vetrov nista usklajeni, bodo pri računanju bodoče razporeditve vremenskih spremenljivk kaj hitro nastale napake – in s tem neuporabne napovedi.

Meritve je torej treba pametno izbrati in ovrednotiti in jim dodati tudi krajevne značilnosti, kot so npr. razgiban relief ali pa lastnosti tal.Končni rezultat računanja so napovedane razporeditve vremenskih spremenljivk po vsem ozračju za nekaj časa vnaprej – in to je za meteorologe že napoved vremena. Za druge – za splošno javnost − pa je treba vse to še preoblikovati v splošno razumljive opise vremena in dodati krajevne značilnosti – na primer, ob tako rekoč enakem splošnem vremenskem dogajanju nad Slovenijo je na sredozemski strani Alpsko-Dinarske gorske pregrade ena vrsta vremena, v osrednji Sloveniji druga, onkraj Trojan tretja in v Pomurju četrta. Take končno oblikovane napovedi si lahko vsakdo ogleda na internetnih straneh Agencije za okolje in fakultetne katedre za meteorologijo, povzetek pa slišimo in beremo v medijih.

Meteorologija pa ni le napovedovanje vremena. Slovenski meteorologi raziskujejo dinamiko ozračja na različnih skalah, modeliranje kakovosti zraka, širjenje onesnaževalcev v ozračju, analizo satelitskih meritev padavin in njihovo verifikacijo v modelih, asimilacijo atmosferskih podatkov in regionalno modeliranje klime. Meteorologija z geofiziko je tudi samostojni študij na fakulteti za matematiko in fiziko; o tem se bo marsikdo poučil na informativnih dnevih.

INTERVJU

Profesor dr. Jože Rakovec je vodja  katedre za meteorologijo na Fakulteti za matematiko in fiziko.

Zadnje dni se marsikje ogreje le do nekaj stopinj pod ničlo, ob tem pa je v Sloveniji veliko manj snega kot pri sosedih. Dihamo torej polarni zrak?

No, to, da je tako mraz, je odvisno od vremenskega dogajanja in v naših krajih v zmernih in visokih geografskih širinah o vremenu odločajo predvsem zračni tokovi. Seveda pa se moramo zavedati, da vreme nastaja tam gori − to pomeni recimo zračne tokove pet ali sedem kilometrov visoko, ki odločajo, kakšno bo vreme. No, sredi prejšnjega stoletja je Carl Gustaf Rossby ugotovil, da ta zračna reka teče okoli Zemlje; v zmernih in visokih geografskih širinah imamo pretežno zahodnike, ki pa pogosto močno valujejo proti severu ali proti jugu − tudi po 1000 do 2000 km proti severu oziroma proti jugu. Oblike tega meandriranja zračnega toka se iz dneva v dan spreminjajo in kadar prihaja k nam zrak iz mrzlih predelov, je seveda mraz. V tistih mrzlih predelih pa se mora zrak najprej shladiti in to se zgodi z negativno energetsko bilanco. Polarni predeli so pozimi bolj ali manj v temi − to pomeni, da dobivajo zelo malo sončne energije, medtem ko sama tla in ozračje, kot je ugotovil Jožef Stefan, sevajo v skladu s svojo temperaturo − sevajo noč in dan. In če ves čas oddajajo, tla in ozračje na teh predelih pa ne dobijo skoraj nič sonca, se zrak lahko zelo ohladi. Kadar začni meandri prinesejo v naše kraje ta mrzli zrak, imamo obdobje mrzlega vremena. To lahko traja precej dolgo. Rossby je nekako ugotovil, da se ti meandri pomikajo od zahoda proti vzhodu predvsem, če so stisnjeni, če pa so dolgi, se lahko premikajo celo v nasprotno smer, od vzhoda proti zahodu. Če so ravno prav dolgi − recimo, da je tak dvojni meander dolg približno 5500 km − pa se nikamor ne premaknejo in potem imamo lahko dva tedna tako rekoč enako vreme; ves čas na primer k nam od severa prihaja mrzel zrak.

Kako pa to, da je recimo v Splitu, v Dalmaciji, več snega kot v Ljubljani?

Treba je vedeti, kako padavine sploh nastajajo. Nastajajo takrat, kadar se zrak dviga − to je nujen pogoj za nastanek padavin. Ko je k nam tekel zrak od severa ali severovzhoda, je v resnici prihajal čez visoke Ture, čez vzhodni rob Alp, to pa pomeni, da se je nad Slovenijo spuščal. No, seveda se je spuščal tudi čez Velebit in Dinarsko gorstvo, ampak zavedati se je treba, da so Dinaridi visoki 1500 m, Alpe pa 3000. Torej je bilo spuščanje nad Slovenijo veliko izrazitejše kot recimo nad Splitom in zato so tam imeli padavine. Seveda je pomembno tudi to, kako vlažen je zrak, ki priteka. Ko se dviga, prihaja tja, kjer je nižji tlak, zato se prilagaja okoliškemu tlaku − to pomeni, da se razširja, prostornina se mu poveča in seveda mora pri širjenju odriniti zrak, ki je bil prej tam. Za odrivanje je treba opraviti delo. Vsako delo pa se plača. Plača ga iz zaloge svoje notranje energije, skratka, s tem, da se mu zniža temperatura. In ko se mu temperatura zniža, gre lahko pod rosišče, nastane kondenz, oblaki in potem ob ugodnih razmerah tudi padavine. Brez dviganja ni oblakov, ni padavin.

Vaši odgovori so rezultat računalniških fizikalnih napovedi in zapletenih enačb. Nekoč ste bili odvisni le od meritev z instrumenti, ki so bili privezani na balone. Zdaj pa so vremenske napovedi torej točnejše. Kako to?

No, v satelitski dobi se je količina podatkov izrazito povečala. Poglejte: nad Atlantikom in Pacifikom ni bilo nikogar, ki bi spuščal balone, oceani pa obsegajo 2/3 površine Zemlje − to pomeni, da smo bili brez podatkov za 2/3 ozračja. Z merjenjem iz satelitov pa dobivamo podatke tako z vrha ozračja kot s tal, recimo na vsakih 50 X 50 km − podatke o temperaturi, delno pa tudi o vetru in o vlažnosti − in tako precej dobro poznamo zdajšnje razmere. Potem to, kar dobimo z meritvami, kot začetne podatke vnesemo v računalniške prognostične meteorološke modele; modeli računajo, kaj se bo dogajalo, in tako dobimo razporeditev temperatur, vlažnost, zračni tlak in vetrove za danes, jutri in pojutrišnjem − tja do deset, morda največ 14 dni vnaprej. Potem postane vse skupaj premalo zanesljivo in takrat odnehamo.

Satelitske slike vidimo vsak večer pri poročilih, vendar bi le na podlagi slik oblakov bolj slabo napovedovali vreme. Lahko omenite kakšen zvitejši način, s katerim z opazovanjem iz vesolja tipate pulz našemu ozračju?

V tem je glavna stvar, bi se reklo. Izmeriti moramo potek temperature od tal do recimo 20, 30 km visoko, vlažnost od tal skozi ozračje do višine 20, 30 km in tako naprej. In kaj imamo na satelitih? Sprejemnike infrardečega in mikrovalovnega sevanja. In v skladu z znanim Stefanovim zakonom, da višja je temperatura, tem močneje stvari sevajo, lahko rečemo: aha, če sprejemnik dobi več energije sevanja, je temperatura višja. Ampak to je še premalo, saj ne vemo, iz katere višine prihaja ta informacija do radiometra na satelitu. No, tu pa imamo srečo, in sicer, da je sposobnost oddajanja tega, reciva, infrardečega sevanja nekoliko odvisna tudi od zračnega tlaka in hkrati za vsako valovno dolžino malo drugačna − to pomeni: če imamo recimo 15-kanalni radiometer, je v prvem kanalu sevanje, ki izhaja predvsem iz najbolj spodnje plasti ozračja, v drugem kanalu je iz malo višje plasti ozračja, v tretjem še iz višje in tako naprej. No, vse to ni tako zelo dobro definirano, da bi iz tega, kar nam 15-kanalni radiometer pove, lahko nedvoumno in brez težav neposredno izračunali potek temperature, recimo z višino. Z malo prebrisanimi metodami, bi lahko rekel, pa se da iz radiometričnih podatkov vendarle dobiti podatke o poteku temperature glede na višino in podobno o poteku vlažnosti zraka z višino. Za zdaj je malo slabše glede vetrov, za to na satelitih še nimamo zelo veliko instrumentov, vendar jih bomo imeli kmalu.

Vremenska napoved je zanesljiva le za 10 do 14 dni vnaprej. Kaj jo lahko uniči?

Dogajanje v ozračju je nelinearno in tako imenovano nelinearno dogajanje je v nekaterih primerih močno odvisno od majhnih fluktuacij v teh začetnih razmerah, ki jih dobimo z merjenjem. Lahko se zgodi, da se recimo začetna simulacija razvoja vremena iz začetnih razmer zdaj že zelo hitro razlikuje od simulacije samo malce drugačnih začetnih razmer − v takem primeru rečemo, da je dogajanje zelo nelinearno, občutljivo za drobne napake. In v teh primerih seveda kolegi prognostiki, ki napovedujejo vreme, niso zelo pogumni v svojih izjavah. Kako to izvemo? V resnici ne naredimo ene same računalniške prognoze, ampak 50. In kadar se vseh 50 skoraj čisto nič ne razlikuje med seboj, to pomeni: aha, tokrat razvoj vremena ni bil zelo občutljiv za drobne napake, napoved je zanesljiva. Takrat se seveda kolegi na TV izprsijo in hrabro povedo, da bo do konca tedna tako in tako. Kadar pa se posamezne prognoze med seboj kar precej razlikujejo, so previdnejši in rečejo “utegne biti” ali “bomo še videli” ali kaj takega. To je stvar nelinearnosti narave in tukaj imamo konceptualno, načelno omejitev glede napovedljivosti vremena, zato ne boste nikoli našli meteorologa, ki bi vam bil pripravljen reči: čez tri tedne bo tako in tako vreme. Vreme sorazmerno hitro pozablja svojo zgodovino − tem hitreje, čim bolj je dogajanje nelinearno.

Lahko ob koncu dodate kakšen nasvet za mladega človeka, ki ga zanima, kako razumeti vreme?

Tisti, ki imajo veselje, ki jim matematično-fizikalni način obravnave problemov ni tuj in ki so pripravljeni tudi zagrabiti za delo, bodo moji mlajši kolegi.


Frekvenca X

694 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Vremenske napovedi - prof. dr. Jože Rakovec

09.02.2012


Večino meritev za napovedovanje vremena zberemo ob pomoči umetnih satelitov, ki krožijo okoli Zemlje.

A tu se stvari šele začnejo: zbrane podatke je treba vključiti v računalniški model, kritično ovrednotiti rezultate računanja z velikimi računalniškimi gručami in šele nekje čisto na koncu tudi povzeti v vsem razumljiv jezik.

Današnja meteorologija je torej tesno povezana z vesoljsko tehnologijo in naprednim računalništvom.

Velik del vsakdanjega poganjanja računalniških gruč na fakulteti za matematiko in fiziko in seveda na Agenciji za okolje je namenjen preračunavanju vremenskih napovedi. Vremensko dogajanje je znano po nepredvidljivosti, zato je predmet intenzivnih mednarodnih raziskav.

Za uspešno napoved je treba najprej poznati zakonitosti, ki uravnavajo dogajanje v ozračju. Potem je treba znati te zakonitosti tako napisati v obliki enačb, da rešitve povedo, kako se bodo temperatura, vlažnost zraka, zračni tlak, veter, oblačnost itn. v vsaki točki ozračja spreminjali s časom. Če to poznamo, poznamo tudi vrednosti vremenskih spremenljivk v vsaki točki ozračja za več dni vnaprej. Toda do tod je kar naporna in dolga pot.

Za začetek moramo vedeti, kakšne so razmere takrat, ko začnemo računanje. To ugotovimo z meritvami. Ker pa se vreme dogaja predvsem tam zgoraj, to pomeni, da moramo meriti po vsem ozračju okoli in okoli Zemlje, od tal pa do 20 ali 30 km nad njimi. Izmerjene podatke je treba tudi medsebojno uskladiti, saj so npr. vzrok za veter razlike zračnega tlaka med kraji: čim večje so, tem močnejši so vetrovi.

Po drugi strani pa vetrovi prenašajo zračne mase sem in tja; s tem se ponekod nakopiči več zraka, zato se zračni tlak poveča, drugod pa je zraka manj in je tlak nižji. In če se slučajno zgodi, da prostorska razporeditev zračnega tlaka in vetrov nista usklajeni, bodo pri računanju bodoče razporeditve vremenskih spremenljivk kaj hitro nastale napake – in s tem neuporabne napovedi.

Meritve je torej treba pametno izbrati in ovrednotiti in jim dodati tudi krajevne značilnosti, kot so npr. razgiban relief ali pa lastnosti tal.Končni rezultat računanja so napovedane razporeditve vremenskih spremenljivk po vsem ozračju za nekaj časa vnaprej – in to je za meteorologe že napoved vremena. Za druge – za splošno javnost − pa je treba vse to še preoblikovati v splošno razumljive opise vremena in dodati krajevne značilnosti – na primer, ob tako rekoč enakem splošnem vremenskem dogajanju nad Slovenijo je na sredozemski strani Alpsko-Dinarske gorske pregrade ena vrsta vremena, v osrednji Sloveniji druga, onkraj Trojan tretja in v Pomurju četrta. Take končno oblikovane napovedi si lahko vsakdo ogleda na internetnih straneh Agencije za okolje in fakultetne katedre za meteorologijo, povzetek pa slišimo in beremo v medijih.

Meteorologija pa ni le napovedovanje vremena. Slovenski meteorologi raziskujejo dinamiko ozračja na različnih skalah, modeliranje kakovosti zraka, širjenje onesnaževalcev v ozračju, analizo satelitskih meritev padavin in njihovo verifikacijo v modelih, asimilacijo atmosferskih podatkov in regionalno modeliranje klime. Meteorologija z geofiziko je tudi samostojni študij na fakulteti za matematiko in fiziko; o tem se bo marsikdo poučil na informativnih dnevih.

INTERVJU

Profesor dr. Jože Rakovec je vodja  katedre za meteorologijo na Fakulteti za matematiko in fiziko.

Zadnje dni se marsikje ogreje le do nekaj stopinj pod ničlo, ob tem pa je v Sloveniji veliko manj snega kot pri sosedih. Dihamo torej polarni zrak?

No, to, da je tako mraz, je odvisno od vremenskega dogajanja in v naših krajih v zmernih in visokih geografskih širinah o vremenu odločajo predvsem zračni tokovi. Seveda pa se moramo zavedati, da vreme nastaja tam gori − to pomeni recimo zračne tokove pet ali sedem kilometrov visoko, ki odločajo, kakšno bo vreme. No, sredi prejšnjega stoletja je Carl Gustaf Rossby ugotovil, da ta zračna reka teče okoli Zemlje; v zmernih in visokih geografskih širinah imamo pretežno zahodnike, ki pa pogosto močno valujejo proti severu ali proti jugu − tudi po 1000 do 2000 km proti severu oziroma proti jugu. Oblike tega meandriranja zračnega toka se iz dneva v dan spreminjajo in kadar prihaja k nam zrak iz mrzlih predelov, je seveda mraz. V tistih mrzlih predelih pa se mora zrak najprej shladiti in to se zgodi z negativno energetsko bilanco. Polarni predeli so pozimi bolj ali manj v temi − to pomeni, da dobivajo zelo malo sončne energije, medtem ko sama tla in ozračje, kot je ugotovil Jožef Stefan, sevajo v skladu s svojo temperaturo − sevajo noč in dan. In če ves čas oddajajo, tla in ozračje na teh predelih pa ne dobijo skoraj nič sonca, se zrak lahko zelo ohladi. Kadar začni meandri prinesejo v naše kraje ta mrzli zrak, imamo obdobje mrzlega vremena. To lahko traja precej dolgo. Rossby je nekako ugotovil, da se ti meandri pomikajo od zahoda proti vzhodu predvsem, če so stisnjeni, če pa so dolgi, se lahko premikajo celo v nasprotno smer, od vzhoda proti zahodu. Če so ravno prav dolgi − recimo, da je tak dvojni meander dolg približno 5500 km − pa se nikamor ne premaknejo in potem imamo lahko dva tedna tako rekoč enako vreme; ves čas na primer k nam od severa prihaja mrzel zrak.

Kako pa to, da je recimo v Splitu, v Dalmaciji, več snega kot v Ljubljani?

Treba je vedeti, kako padavine sploh nastajajo. Nastajajo takrat, kadar se zrak dviga − to je nujen pogoj za nastanek padavin. Ko je k nam tekel zrak od severa ali severovzhoda, je v resnici prihajal čez visoke Ture, čez vzhodni rob Alp, to pa pomeni, da se je nad Slovenijo spuščal. No, seveda se je spuščal tudi čez Velebit in Dinarsko gorstvo, ampak zavedati se je treba, da so Dinaridi visoki 1500 m, Alpe pa 3000. Torej je bilo spuščanje nad Slovenijo veliko izrazitejše kot recimo nad Splitom in zato so tam imeli padavine. Seveda je pomembno tudi to, kako vlažen je zrak, ki priteka. Ko se dviga, prihaja tja, kjer je nižji tlak, zato se prilagaja okoliškemu tlaku − to pomeni, da se razširja, prostornina se mu poveča in seveda mora pri širjenju odriniti zrak, ki je bil prej tam. Za odrivanje je treba opraviti delo. Vsako delo pa se plača. Plača ga iz zaloge svoje notranje energije, skratka, s tem, da se mu zniža temperatura. In ko se mu temperatura zniža, gre lahko pod rosišče, nastane kondenz, oblaki in potem ob ugodnih razmerah tudi padavine. Brez dviganja ni oblakov, ni padavin.

Vaši odgovori so rezultat računalniških fizikalnih napovedi in zapletenih enačb. Nekoč ste bili odvisni le od meritev z instrumenti, ki so bili privezani na balone. Zdaj pa so vremenske napovedi torej točnejše. Kako to?

No, v satelitski dobi se je količina podatkov izrazito povečala. Poglejte: nad Atlantikom in Pacifikom ni bilo nikogar, ki bi spuščal balone, oceani pa obsegajo 2/3 površine Zemlje − to pomeni, da smo bili brez podatkov za 2/3 ozračja. Z merjenjem iz satelitov pa dobivamo podatke tako z vrha ozračja kot s tal, recimo na vsakih 50 X 50 km − podatke o temperaturi, delno pa tudi o vetru in o vlažnosti − in tako precej dobro poznamo zdajšnje razmere. Potem to, kar dobimo z meritvami, kot začetne podatke vnesemo v računalniške prognostične meteorološke modele; modeli računajo, kaj se bo dogajalo, in tako dobimo razporeditev temperatur, vlažnost, zračni tlak in vetrove za danes, jutri in pojutrišnjem − tja do deset, morda največ 14 dni vnaprej. Potem postane vse skupaj premalo zanesljivo in takrat odnehamo.

Satelitske slike vidimo vsak večer pri poročilih, vendar bi le na podlagi slik oblakov bolj slabo napovedovali vreme. Lahko omenite kakšen zvitejši način, s katerim z opazovanjem iz vesolja tipate pulz našemu ozračju?

V tem je glavna stvar, bi se reklo. Izmeriti moramo potek temperature od tal do recimo 20, 30 km visoko, vlažnost od tal skozi ozračje do višine 20, 30 km in tako naprej. In kaj imamo na satelitih? Sprejemnike infrardečega in mikrovalovnega sevanja. In v skladu z znanim Stefanovim zakonom, da višja je temperatura, tem močneje stvari sevajo, lahko rečemo: aha, če sprejemnik dobi več energije sevanja, je temperatura višja. Ampak to je še premalo, saj ne vemo, iz katere višine prihaja ta informacija do radiometra na satelitu. No, tu pa imamo srečo, in sicer, da je sposobnost oddajanja tega, reciva, infrardečega sevanja nekoliko odvisna tudi od zračnega tlaka in hkrati za vsako valovno dolžino malo drugačna − to pomeni: če imamo recimo 15-kanalni radiometer, je v prvem kanalu sevanje, ki izhaja predvsem iz najbolj spodnje plasti ozračja, v drugem kanalu je iz malo višje plasti ozračja, v tretjem še iz višje in tako naprej. No, vse to ni tako zelo dobro definirano, da bi iz tega, kar nam 15-kanalni radiometer pove, lahko nedvoumno in brez težav neposredno izračunali potek temperature, recimo z višino. Z malo prebrisanimi metodami, bi lahko rekel, pa se da iz radiometričnih podatkov vendarle dobiti podatke o poteku temperature glede na višino in podobno o poteku vlažnosti zraka z višino. Za zdaj je malo slabše glede vetrov, za to na satelitih še nimamo zelo veliko instrumentov, vendar jih bomo imeli kmalu.

Vremenska napoved je zanesljiva le za 10 do 14 dni vnaprej. Kaj jo lahko uniči?

Dogajanje v ozračju je nelinearno in tako imenovano nelinearno dogajanje je v nekaterih primerih močno odvisno od majhnih fluktuacij v teh začetnih razmerah, ki jih dobimo z merjenjem. Lahko se zgodi, da se recimo začetna simulacija razvoja vremena iz začetnih razmer zdaj že zelo hitro razlikuje od simulacije samo malce drugačnih začetnih razmer − v takem primeru rečemo, da je dogajanje zelo nelinearno, občutljivo za drobne napake. In v teh primerih seveda kolegi prognostiki, ki napovedujejo vreme, niso zelo pogumni v svojih izjavah. Kako to izvemo? V resnici ne naredimo ene same računalniške prognoze, ampak 50. In kadar se vseh 50 skoraj čisto nič ne razlikuje med seboj, to pomeni: aha, tokrat razvoj vremena ni bil zelo občutljiv za drobne napake, napoved je zanesljiva. Takrat se seveda kolegi na TV izprsijo in hrabro povedo, da bo do konca tedna tako in tako. Kadar pa se posamezne prognoze med seboj kar precej razlikujejo, so previdnejši in rečejo “utegne biti” ali “bomo še videli” ali kaj takega. To je stvar nelinearnosti narave in tukaj imamo konceptualno, načelno omejitev glede napovedljivosti vremena, zato ne boste nikoli našli meteorologa, ki bi vam bil pripravljen reči: čez tri tedne bo tako in tako vreme. Vreme sorazmerno hitro pozablja svojo zgodovino − tem hitreje, čim bolj je dogajanje nelinearno.

Lahko ob koncu dodate kakšen nasvet za mladega človeka, ki ga zanima, kako razumeti vreme?

Tisti, ki imajo veselje, ki jim matematično-fizikalni način obravnave problemov ni tuj in ki so pripravljeni tudi zagrabiti za delo, bodo moji mlajši kolegi.


06.05.2021

Materiali potujejo (II)

V drugem delu nove serije Frekvence X z novimi tehnologijami natisnemo kolenski vsadek, oblečemo pametni jopič, sestavimo najlažje kolo na svetu in naš planet obkrožimo s hitrostjo 27.000 kilometrov na uro.


29.04.2021

Virus danes, virus jutri

Kako razumeti virusno evolucijo, zakaj je pomembno spremljanje novih različic in kaj vse to pomeni za prihodnost pandemije?


22.04.2021

Materiali gradijo (I)

Rdeča nit nove serije oddaj Frekvence X so materiali. V prvem delu smo se ob pomoči strokovnjakov z Zavoda za gradbeništvo Slovenije lotili tistih, ki sestavljajo infrastrukturo človeških civilizacij.


15.04.2021

Slovenski izumrli sloni

Fosilni ostanki trobčarjev na slovenskih tleh-


08.04.2021

Napačen rez lahko odreže tudi sposobnost prepoznavanja (ženinega) obraza

Možgani so dih jemajoč organ, v katerega se zaljubiš in v katerega nikoli ne zarežeš brez strahospoštovanja. Odstranjevanje tumorja budnemu pacientu pa je eden najzahtevnejših postopkov v kirurgiji.


01.04.2021

Hrbtenica svetovnega internetnega omrežja leži na dnu oceanov

Kar 99 odstotkov vseh podatkov se prenaša po optičnih vlaknih, ki skoraj nezavarovana ležijo tudi nekaj tisoč metrov pod vodo.


25.03.2021

Na valovih odnosov: V digitalnem svetu nihče ni otok

Na kakšnih preizkušnjah so naši možgani in zakaj smo utrujeni od številnih virtualnih interakcij? Kakšna je vloga umetne inteligence in kje lahko nadgradi človeško?


17.03.2021

Na valovih odnosov: Ekstremne razmere

Kako in zakaj se odzivamo v ekstremnih razmerah? Kakšni mehanizmi se sprožajo v možganih? Kako je s stresom in kaj v odnose prinese adrenalin?


11.03.2021

Na valovih odnosov: Realnost pod maskami

Kako nošnja zaščitnih mask vpliva na odnose med ljudmi, kako so se spremenili naši mehanizmi spoznavanja in prepoznavanja? So se naši možgani privadili mask, se jih bodo tudi odvadili?


04.03.2021

Vznik življenja se ni zgodil samo enkrat, ampak večkrat na več krajih

Prof. Lewis Dartnell, avtor knjige Izvori, astrobiolog in komunikator znanosti o tem, kako je naš planet oblikoval človeško zgodovino.


25.02.2021

Skrivnosti prav posebnih zvezd, ki jim pravimo magnetarji

Nedavno je Nasini misiji Fermi LAT uspelo odkriti izbruh te nevtronske zvezde v bližnji galaksiji.


18.02.2021

Astrofotografija za telebane

Tokratno Frekvenco X bi lahko naslovili Fotografski vodnik po galaksiji ali pa kar Astrofotografija za telebane, prvi del. Skupaj se bomo učili o tem, kako potovati po vesolju kar z domačega balkona ali s strehe. Svoje iznajdljive in predvsem zelo cenovno dostopne astrofotografske rešitve bo z nami delil angleški astrofizik Rory Griffin.


11.02.2021

Zatiskanje oči pred izumiranjem

Kako se spopadati z zanikanjem izgube biotske raznovrstnosti*


04.02.2021

Kvantna prihodnost 3/3: Varne komunikacije in nevaren nadzor

Kvantne tehnologije prinašajo mnoge prednosti, a tudi nova etična vprašanja in potencialne nevarnosti. Zaradi njih bomo morali spremeniti številne družbene podsisteme.


28.01.2021

Kvantna prihodnost 2/3: Teleportacija? Tudi to je mogoče!

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


21.01.2021

Kvantna prihodnost 1/3: Prvi koraki do kvantne premoči

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


14.01.2021

V iskanju superprevodnikov, tehnološkega svetega grala

Kaj so superprevodniki, kaj z njimi zmoremo že danes in kaj si lahko z njihovo izpopolnitvijo obetamo? Kličemo tudi enega od avtorjev študije, ki so jo lani uvrstili med ključne znanstvene preboje leta?


07.01.2021

Skrivnosti pod ledom

Pod ledom se skrivajo skrivnosti, ki govorijo o človeški zgodovini in morda tudi prihodnjih pandemijah. A kako dolgo bodo še zaklenjene v led?


30.12.2020

Znanost v letu 2020: Od koronavirusa, vesolja do okoljskih alarmov

Znanost je v letu 2020 prišla izrazito v ospredje. Tja jo je potisnila pandemija, ki je zahtevala znanstvene odgovore in rešitve za ključni zdravstveni problem tega trenutka. Brez dvoma je koronavirus določal prioritete tudi v znanstvenem raziskovanju in hkrati sprožil nekaj velikih sprememb na tem področju. Pa vendar je bilo pestro tudi dogajanje na drugih znanstvenih področjih. V pregledu znanosti v letu 2020 nam bodo Maja Ratej (Val 202), Aljoša Masten (MMC) in Nina Slaček (Prvi in Ars) poleg osrednjih tem – koronavirusa, vesolja ter podnebno-ekološke krize – v pogovoru nanizali tudi prgišče drugih pomembnih prebojev z različnih znanstvenih področij.


30.12.2020

Fizik Jurij Bajc: Tako močnih potresov po svetu letno ni veliko

Po rušilnem potresu na Hrvaškem smo za nekaj pojasnil prosili fizika dr. Jurija Bajca s Pedagoške fakultete v Ljubljani, ki se ukvarja tudi s področjem potresov. Kot pravi, takšni rušilni potresi s tolikšno magnitudo letno na svetu niso pogosti, zgodi se jih le kakšnih sto, na našem območju pa je bila z njim v zadnjem stoletju primerljiva le peščica potresnih sunkov. Za kakšno sproščeno moč je šlo pri tokratnem tresenju tal južno od Zagreba, je tako številčno zaporedje potresov na Balkanu nekaj izrednega ali prej pričakovanega in kakšne potrese sploh imamo na Balkanu, posledica česa so, bo pojasnil na razumljiv in poljuden način. Foto: Bobo


Stran 9 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov