Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Teorija relativnosti in nastanek črnih lukenj. dr. Jerome Novák z Observatorija Meudon pri Parizu

05.04.2012


Einsteinova splošna teorija relativnosti bo kmalu praznovala stoletnico. Einstein je že leta 1915 pokazal, da njegova teorija lahko pojasni opazovano sukanje točke, v kateri se planet Merkur najbolj približa Soncu.

Še bolj dramatična potrditev je bilo opazovanje premika zvezd, ki jih vidimo poleg Sonca ob popolnem Sončevem mrku. Angleška kraljeva družba je zato leta 1919 poslala odpravo na Papuo – Novo Gvinejo. Rezultati, ki so se popolnoma ujemali z Einsteinovimi napovedmi, so mu prinesli takojšnjo slavo.

Danes nam po potrditev napovedi teorije ni treba hoditi tja. Splošna relativnost vpliva na naše vsakdanje življenje in na razlage številnih pojavov v vesolju. Kar nekaj primerov, ki jih zdaj povzemamo,  nam je naštel naš gost, dr. Jerome Novak, raziskovalec v laboratoriju Vesolje in teorije pariškega observatorija v Meudonu.

V vesolju je primerov kar veliko, prvo je že vesolje samo in njegovo širjenje. Pred dobrimi 80 leti ga je odkril Edwin P. Hubble in to širjenje je mogoče  razložiti samo s splošno relativnostjo, Newtonova običajna teorija se temu ne prilagodi. S tem v zvezi je tudi pojav, ki se imenuje prasevanje. To je nekakšna prva slika vesolja, elektromagnetno valovanje, ki napolnjuje celotno vesolje. Odkrili so ga že v 60 letih.

Tudi to valovanje je v skladu s tem, kar predvideva teorija splošne relativnosti, in vse to kaže, da tudi zgodovine vesolja sploh ni mogoče razlagati brez Einsteinove teorije. Poleg celotnega vesolja pa poznamo tudi črne luknje ali nevtronske zvezde, ki imajo zelo močno gravitacijsko polje, in tudi teh ni mogoče opisati brez splošne relativnosti, še posebno opazovanja v visokih energijah elektromagnetnega valovanja, kot so rentgenski ali gama žarki.

Einsteinova teorija opisuje zelo močna gravitacijska polja, tako da  je na Zemlji, na kateri je to polje bolj šibko, Newtonova teorija po navadi dovolj točna. V  vsakdanjem življenju  pa je  splošna relativnost navzoča ob pomoči GPS. Premika teh satelitov, ki nam pošiljajo signale, se ne da dobro izračunati v sklopu Newtonove teorije. To pomeni, da bi bile napake položajev teh satelitov, izračunane v okviru Newtonove teorije, prevelike in bi povrhu tega s časom še rastle. To pomeni, da brez splošne relativnosti GPS (Global Positioning System) sploh ne bi deloval in ne bi mogli imeti točnih informacij.

Kljub skladnosti napovedi Einsteinove splošne teorije relativnosti z opazovanji pa jo fiziki ves čas z veliko vnemo preizkušajo. Preverjanje teorij je vedno pomembno; ni dovolj napisati teorijo, tudi če je lepa. Še več zanimanja  je zato, ker za zdaj ni mogoče združiti splošne relativnosti z drugo veliko teorijo fizike 20. stoletja − kvantno mehaniko. Težava je v tem, da nimamo nobenega točnega opisa kvantne gravitacije oziroma nobene teorije za kvantno gravitacijo. Ker teoretična zgradba ni jasna, je treba preizkusiti vse te teorije in tudi splošno relativnost – tako osnove kot podrobnosti – v vseh smereh. Tako fiziki skušajo  najti kakšno slabost ali namig,  kje iskati kvantno teorijo gravitacije.

Na prvi pogled se sicer zdi, da majhne spremembe ne bi smele imeti velikih posledic. Situacija je nekoliko podobna slavnemu, zdaj že rešenemu problemu glede hitrosti nevtrinov, za katere se je zdelo, da gredo malce hitreje od svetlobe in s tem rušijo naše razumevanje sveta.

Vendar so te majhne razlike  pogoste in seveda lahko privedejo do velikih teorij. Tudi teorijo splošne relativnosti je vzpodbudila majhna razlika med opazovanjem gibanja Merkurja in računanjem tega gibanja po Newtonovem zakonu.  Tudi majhna razlika, ki bi bila potrjena − ne tako kot pri nevtrinih, pri katerih se je pokazalo, da je bil problem nekako v meritvi sami − bi lahko, kar zadeva splošno relativnost, nakazovala novo znanstveno revolucijo. Ta mala razlika bi namreč pokazala, v kateri smeri je treba iskati razlago.

Naš gost dr. Jérôme Novak se je pred malo manj kot 40 leti rodil v Araraquari v Braziliji. Astrofiziko je študiral v Parizu in pred 14 leti doktoriral z delom, ki je z numeričnimi tehnikami obravnavalo izvore gravitacijskih valov. To so nihanja prostora, ki nastanejo ob dramatičnih dogodkih, kot so nastanek, zlivanje ali hitro kroženje črnih lukenj in zelo gostih zvezd.

Na podoktorskem izpopolnjevanju v Španiji je raziskoval računalniško modeliranje hidrodinamike v okviru splošne teorije relativnosti. Zdaj je raziskovalec v laboratoriju  Vesolje in teorije pariškega observatorija v Meudonu pri Parizu. Pred kratkim je obiskal raziskovalno skupino na fakulteti za matematiko in fiziko in predaval našim študentom o Einsteinovi splošni teoriji relativnosti in nastajanju črnih lukenj. To je bil tudi povod za naš današnji pogovor.

INTERVJU

Ko govorimo o splošni teoriji relativnosti, lahko rečemo, da nimamo tako izzivalne meritve, kot je bila tista, ki je privedla do trditve o nevtrinih, hitrejših od svetlobe. Pa vendar so v preteklih letih nekateri razmišljali o alternativnih razlagah s skupnim imenom modificirana Newtonova dinamika. Vaše nedavne raziskave so, če prav razumemo, pokazale, da take alternativne razlage niso skladne z gibanjem planetov v našem Osončju. Lahko na kratko razložite svoje in druge rezultate testiranj alternativnih razlag, tako v našem Osončju kot drugod?

Foto: LUTH

Ja, modificirana Newtonova dinamika je zelo uspešna teorija, kar zadeva opis gibanja zvezd okoli jeder galaksij. Po navadi se ljudje ob razlagi sklicujejo na temno snov, ki jo sestavljajo neznani delci in antidelci, ki jih na Zemlji nikakor ne moremo zaznati, niti v Cernu v pospeševalniku LHC (Large Hadron Collider). In ti delci, ki so navzoči v galaksijah, vplivajo na gibanje zvezd. Te se zato gibljejo drugače, kot bi pričakovali. V nasprotju s to sliko, povezano s temno snovjo neznanega izvora, pa modificirana Newtonova dinamika gibanje zvezd lahko razloži brez neznanih delcev, in to je zelo zanimivo. Žal pa smo dokazali, da ta teorija hkrati predvideva spremenjeno gibanje planetov okoli našega Sonca v primeri z Newtonovo teorijo ali tudi splošno relativnostjo. Te razlike je danes možno izmeriti in dani rezultati, predvsem za Jupiter ali Saturn, kažejo, da  predvidevanja modificirane Newtonove dinamike niso skladna z opazovanji. Kaže, da tej teoriji bolj slabo kaže, ali pa jo bo treba še enkrat spremeniti oziroma bolje premisliti. Modificirana Newtonova dinamika je alternativna teorija, ki skuša iti dlje od Newtonove teorije. So pa še druge alternativne teorije, ki so teoretično bolje utemeljene. Tako imenovana tenzorska skalarna teorija, znana tudi kot Brans-Dickova, je splošnejša od preostalih. To je zelo zanimivo, ker se da primerjati splošno relativnost z drugimi teorijami, ki so nekako v isti skupini. Različne teorije primerjajo tudi z drugimi meritvami. Tak preizkus je zelo točna  laserska meritev razdalje med Zemljo in Luno ali pa zelo točna časovna meritev gibanja para zelo zgoščenih zvezd z imenom pulzarji. Vse te meritve so pokazale, da je splošna relativnost najboljša teorija za gravitacijo. Za zelo točno časovno meritev gibanja dveh pulzarjev sta Hussel in Taylor dobila Nobelovo nagrado iz fizike za leto 1993 in s tem sta tudi pokazala, da je splošna relativnost zelo dobro sprejeta.

Preučujete tudi nastanek črnih lukenj. Gre za zelo dramatične dogodke. Vse  se dogaja izjemno hitro, razmere so zelo daleč od izkušenj, ki jih imamo s snovjo na Zemlji. Ste strokovnjak, ki je pomembno prispeval k razvoju računalniških programov za obravnavanje takih pojavov. Lahko pojasnite, v čem je prednost vašega pristopa?  

To je razmeroma nova tema. Začeli smo pred kakim letom in več. V glavnem skušamo razumeti, kako nastane črna luknja iz navadne zvezde – masivne, ampak običajne zvezde, kakršnih na nebu vidimo na stotine. Naš pristop ima dve prednosti. Intenzivno uporabljamo računalnike za skladno rešitev Einsteinovih enačb splošne relativnosti. Problem so namreč računske napake, ki lahko tako narastejo, da je rezultat popolnoma napačen. Matematično smo študirali nov zapis Einsteinovih enačb, ki dajo najstabilnejšo in najtočnejšo rešitev doslej. Lepo opišejo tudi nastanek črne luknje. To je prva prednost. Druga pa je, da pri opisu zvezde, ki se krči v črno luknjo, upoštevamo tudi nastanek novih delcev, kot so recimo pioni. Doslej so pri računih upoštevali samo protone, nevtrone in elektrone, čeprav vemo, da bi pri gostoti in temperaturi snovi, ki se seseda v črno luknjo, morali nastati tudi ti novi delci. To seveda vpliva na proces nastanka črne luknje in opis tega pojava.

Črne luknje v vesolju so danes realnost, potrjena z zelo raznovrstnimi opazovanji. Zato so realnost tudi situacije, ki so včasih sodile le v znanstveno fantastiko. Tako kot vemo, da obstajajo planeti, ki imajo po dve sonci, vemo tudi, da je smiselno razmišljati o vesoljski ladji, ki se bliža črni luknji. Kaj bi videli astronavti na krovu, kako na realnost vplivajo gole singularnosti, ki jih morda dopušča teorija?

Škoda je, da je to radijski intervju in da ne moremo pokazati nekaj slik. To so z računalnikom izračunane sintetične slike, ki kažejo, čemu je podobna črna luknja. Na kratko, na vesoljski ladji bi črno luknjo videli predvsem kot deformacijo zvezdnega ozadja, to se pravi tako, kot če bi bila med to ladjo in zvezdami velikanska leča. Z ladje bi bila zato slika teh zvezd videti deformirana. Če pa je po drugi strani v bližini črne luknje kaj plina, in to se v vesolju pogosto zgodi, ta plin potem pada v črno luknjo in astronavti bi videli, kako pada in pri tem žari. To je nekako slika tega dogodka. Teh primerov je bilo izračunanih že dovolj, da imamo dobro predstavo, kako se to dogaja.

Gola singularnost pa  je nekako to, kar je v črni luknji. Iz navadne črne luknje informacija sploh ne more. Gola singularnost pa bi bila točka, v kateri bi gostota in gravitacijsko polje hkrati postajali neskončno veliki. Te gole singularnosti teorija sicer dopušča, a ob tem tudi kaže, da niso stabilne. Zato bi gole singularnosti izginile, se razpršile ali pa postale črne luknje.

Za zdaj, kot pravi dr. Novak, jih v naravi verjetno ni. Če pa bi kdaj dokazali ali opazili golo singularnost, bi bilo to nekaj zelo čudnega. Ne bi bila deterministična, ne bi mogli predvideti, kakšna informacija prihaja iz te gole singularnosti. S tem je povezana tudi hipoteza kozmične cenzure. Ta hipoteza pravi, da v vesolju ne more biti  golih singularnosti. To je samo hipoteza ali predpostavka, ki ni dokazana. Za zdaj  kaže, da so gole singularnosti nestabilne in zato res ne morejo obstajati.

Najbrž ob črno luknjo zlepa ne bomo trčili, ker je  predaleč. Vendar razmišljanje o takih pojavih pomaga k boljšemu razumevanju razvoja vesolja in našega mesta v njem. To daje Einsteinovi splošni teoriji relativnosti dodatno, kulturno dimenzijo, hkrati pa ob zapletenih in za Zemljane neobičajnih konceptih raziskovalci brusijo pristope, ki so uporabni tudi drugje.

Tudi v Franciji  se pojavlja podoben trend kot pri nas − številni diplomanti in celo doktorji fizike naredijo uspešne kariere na popolnoma drugih področjih, od financ do vodenja podjetij. Matematika in fizika sta  v Franciji na prvem mestu in ju uporabljajo  za selekcijo elite že v srednji šoli, tako da ima veliko pomembnih menedžerjev matematično in  fizikalno kulturo.

Poleg financ se študenti usmerijo tudi drugam. Najbolj originalna sprememba področja se mu je zdela, ko je nekdanji   študent in doktorand v njegovi  skupini postal igralec pokra. Prehod od fizike vse do igranja pokra se mu vendarle zdi seveda malo prevelik.


Frekvenca X

694 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Teorija relativnosti in nastanek črnih lukenj. dr. Jerome Novák z Observatorija Meudon pri Parizu

05.04.2012


Einsteinova splošna teorija relativnosti bo kmalu praznovala stoletnico. Einstein je že leta 1915 pokazal, da njegova teorija lahko pojasni opazovano sukanje točke, v kateri se planet Merkur najbolj približa Soncu.

Še bolj dramatična potrditev je bilo opazovanje premika zvezd, ki jih vidimo poleg Sonca ob popolnem Sončevem mrku. Angleška kraljeva družba je zato leta 1919 poslala odpravo na Papuo – Novo Gvinejo. Rezultati, ki so se popolnoma ujemali z Einsteinovimi napovedmi, so mu prinesli takojšnjo slavo.

Danes nam po potrditev napovedi teorije ni treba hoditi tja. Splošna relativnost vpliva na naše vsakdanje življenje in na razlage številnih pojavov v vesolju. Kar nekaj primerov, ki jih zdaj povzemamo,  nam je naštel naš gost, dr. Jerome Novak, raziskovalec v laboratoriju Vesolje in teorije pariškega observatorija v Meudonu.

V vesolju je primerov kar veliko, prvo je že vesolje samo in njegovo širjenje. Pred dobrimi 80 leti ga je odkril Edwin P. Hubble in to širjenje je mogoče  razložiti samo s splošno relativnostjo, Newtonova običajna teorija se temu ne prilagodi. S tem v zvezi je tudi pojav, ki se imenuje prasevanje. To je nekakšna prva slika vesolja, elektromagnetno valovanje, ki napolnjuje celotno vesolje. Odkrili so ga že v 60 letih.

Tudi to valovanje je v skladu s tem, kar predvideva teorija splošne relativnosti, in vse to kaže, da tudi zgodovine vesolja sploh ni mogoče razlagati brez Einsteinove teorije. Poleg celotnega vesolja pa poznamo tudi črne luknje ali nevtronske zvezde, ki imajo zelo močno gravitacijsko polje, in tudi teh ni mogoče opisati brez splošne relativnosti, še posebno opazovanja v visokih energijah elektromagnetnega valovanja, kot so rentgenski ali gama žarki.

Einsteinova teorija opisuje zelo močna gravitacijska polja, tako da  je na Zemlji, na kateri je to polje bolj šibko, Newtonova teorija po navadi dovolj točna. V  vsakdanjem življenju  pa je  splošna relativnost navzoča ob pomoči GPS. Premika teh satelitov, ki nam pošiljajo signale, se ne da dobro izračunati v sklopu Newtonove teorije. To pomeni, da bi bile napake položajev teh satelitov, izračunane v okviru Newtonove teorije, prevelike in bi povrhu tega s časom še rastle. To pomeni, da brez splošne relativnosti GPS (Global Positioning System) sploh ne bi deloval in ne bi mogli imeti točnih informacij.

Kljub skladnosti napovedi Einsteinove splošne teorije relativnosti z opazovanji pa jo fiziki ves čas z veliko vnemo preizkušajo. Preverjanje teorij je vedno pomembno; ni dovolj napisati teorijo, tudi če je lepa. Še več zanimanja  je zato, ker za zdaj ni mogoče združiti splošne relativnosti z drugo veliko teorijo fizike 20. stoletja − kvantno mehaniko. Težava je v tem, da nimamo nobenega točnega opisa kvantne gravitacije oziroma nobene teorije za kvantno gravitacijo. Ker teoretična zgradba ni jasna, je treba preizkusiti vse te teorije in tudi splošno relativnost – tako osnove kot podrobnosti – v vseh smereh. Tako fiziki skušajo  najti kakšno slabost ali namig,  kje iskati kvantno teorijo gravitacije.

Na prvi pogled se sicer zdi, da majhne spremembe ne bi smele imeti velikih posledic. Situacija je nekoliko podobna slavnemu, zdaj že rešenemu problemu glede hitrosti nevtrinov, za katere se je zdelo, da gredo malce hitreje od svetlobe in s tem rušijo naše razumevanje sveta.

Vendar so te majhne razlike  pogoste in seveda lahko privedejo do velikih teorij. Tudi teorijo splošne relativnosti je vzpodbudila majhna razlika med opazovanjem gibanja Merkurja in računanjem tega gibanja po Newtonovem zakonu.  Tudi majhna razlika, ki bi bila potrjena − ne tako kot pri nevtrinih, pri katerih se je pokazalo, da je bil problem nekako v meritvi sami − bi lahko, kar zadeva splošno relativnost, nakazovala novo znanstveno revolucijo. Ta mala razlika bi namreč pokazala, v kateri smeri je treba iskati razlago.

Naš gost dr. Jérôme Novak se je pred malo manj kot 40 leti rodil v Araraquari v Braziliji. Astrofiziko je študiral v Parizu in pred 14 leti doktoriral z delom, ki je z numeričnimi tehnikami obravnavalo izvore gravitacijskih valov. To so nihanja prostora, ki nastanejo ob dramatičnih dogodkih, kot so nastanek, zlivanje ali hitro kroženje črnih lukenj in zelo gostih zvezd.

Na podoktorskem izpopolnjevanju v Španiji je raziskoval računalniško modeliranje hidrodinamike v okviru splošne teorije relativnosti. Zdaj je raziskovalec v laboratoriju  Vesolje in teorije pariškega observatorija v Meudonu pri Parizu. Pred kratkim je obiskal raziskovalno skupino na fakulteti za matematiko in fiziko in predaval našim študentom o Einsteinovi splošni teoriji relativnosti in nastajanju črnih lukenj. To je bil tudi povod za naš današnji pogovor.

INTERVJU

Ko govorimo o splošni teoriji relativnosti, lahko rečemo, da nimamo tako izzivalne meritve, kot je bila tista, ki je privedla do trditve o nevtrinih, hitrejših od svetlobe. Pa vendar so v preteklih letih nekateri razmišljali o alternativnih razlagah s skupnim imenom modificirana Newtonova dinamika. Vaše nedavne raziskave so, če prav razumemo, pokazale, da take alternativne razlage niso skladne z gibanjem planetov v našem Osončju. Lahko na kratko razložite svoje in druge rezultate testiranj alternativnih razlag, tako v našem Osončju kot drugod?

Foto: LUTH

Ja, modificirana Newtonova dinamika je zelo uspešna teorija, kar zadeva opis gibanja zvezd okoli jeder galaksij. Po navadi se ljudje ob razlagi sklicujejo na temno snov, ki jo sestavljajo neznani delci in antidelci, ki jih na Zemlji nikakor ne moremo zaznati, niti v Cernu v pospeševalniku LHC (Large Hadron Collider). In ti delci, ki so navzoči v galaksijah, vplivajo na gibanje zvezd. Te se zato gibljejo drugače, kot bi pričakovali. V nasprotju s to sliko, povezano s temno snovjo neznanega izvora, pa modificirana Newtonova dinamika gibanje zvezd lahko razloži brez neznanih delcev, in to je zelo zanimivo. Žal pa smo dokazali, da ta teorija hkrati predvideva spremenjeno gibanje planetov okoli našega Sonca v primeri z Newtonovo teorijo ali tudi splošno relativnostjo. Te razlike je danes možno izmeriti in dani rezultati, predvsem za Jupiter ali Saturn, kažejo, da  predvidevanja modificirane Newtonove dinamike niso skladna z opazovanji. Kaže, da tej teoriji bolj slabo kaže, ali pa jo bo treba še enkrat spremeniti oziroma bolje premisliti. Modificirana Newtonova dinamika je alternativna teorija, ki skuša iti dlje od Newtonove teorije. So pa še druge alternativne teorije, ki so teoretično bolje utemeljene. Tako imenovana tenzorska skalarna teorija, znana tudi kot Brans-Dickova, je splošnejša od preostalih. To je zelo zanimivo, ker se da primerjati splošno relativnost z drugimi teorijami, ki so nekako v isti skupini. Različne teorije primerjajo tudi z drugimi meritvami. Tak preizkus je zelo točna  laserska meritev razdalje med Zemljo in Luno ali pa zelo točna časovna meritev gibanja para zelo zgoščenih zvezd z imenom pulzarji. Vse te meritve so pokazale, da je splošna relativnost najboljša teorija za gravitacijo. Za zelo točno časovno meritev gibanja dveh pulzarjev sta Hussel in Taylor dobila Nobelovo nagrado iz fizike za leto 1993 in s tem sta tudi pokazala, da je splošna relativnost zelo dobro sprejeta.

Preučujete tudi nastanek črnih lukenj. Gre za zelo dramatične dogodke. Vse  se dogaja izjemno hitro, razmere so zelo daleč od izkušenj, ki jih imamo s snovjo na Zemlji. Ste strokovnjak, ki je pomembno prispeval k razvoju računalniških programov za obravnavanje takih pojavov. Lahko pojasnite, v čem je prednost vašega pristopa?  

To je razmeroma nova tema. Začeli smo pred kakim letom in več. V glavnem skušamo razumeti, kako nastane črna luknja iz navadne zvezde – masivne, ampak običajne zvezde, kakršnih na nebu vidimo na stotine. Naš pristop ima dve prednosti. Intenzivno uporabljamo računalnike za skladno rešitev Einsteinovih enačb splošne relativnosti. Problem so namreč računske napake, ki lahko tako narastejo, da je rezultat popolnoma napačen. Matematično smo študirali nov zapis Einsteinovih enačb, ki dajo najstabilnejšo in najtočnejšo rešitev doslej. Lepo opišejo tudi nastanek črne luknje. To je prva prednost. Druga pa je, da pri opisu zvezde, ki se krči v črno luknjo, upoštevamo tudi nastanek novih delcev, kot so recimo pioni. Doslej so pri računih upoštevali samo protone, nevtrone in elektrone, čeprav vemo, da bi pri gostoti in temperaturi snovi, ki se seseda v črno luknjo, morali nastati tudi ti novi delci. To seveda vpliva na proces nastanka črne luknje in opis tega pojava.

Črne luknje v vesolju so danes realnost, potrjena z zelo raznovrstnimi opazovanji. Zato so realnost tudi situacije, ki so včasih sodile le v znanstveno fantastiko. Tako kot vemo, da obstajajo planeti, ki imajo po dve sonci, vemo tudi, da je smiselno razmišljati o vesoljski ladji, ki se bliža črni luknji. Kaj bi videli astronavti na krovu, kako na realnost vplivajo gole singularnosti, ki jih morda dopušča teorija?

Škoda je, da je to radijski intervju in da ne moremo pokazati nekaj slik. To so z računalnikom izračunane sintetične slike, ki kažejo, čemu je podobna črna luknja. Na kratko, na vesoljski ladji bi črno luknjo videli predvsem kot deformacijo zvezdnega ozadja, to se pravi tako, kot če bi bila med to ladjo in zvezdami velikanska leča. Z ladje bi bila zato slika teh zvezd videti deformirana. Če pa je po drugi strani v bližini črne luknje kaj plina, in to se v vesolju pogosto zgodi, ta plin potem pada v črno luknjo in astronavti bi videli, kako pada in pri tem žari. To je nekako slika tega dogodka. Teh primerov je bilo izračunanih že dovolj, da imamo dobro predstavo, kako se to dogaja.

Gola singularnost pa  je nekako to, kar je v črni luknji. Iz navadne črne luknje informacija sploh ne more. Gola singularnost pa bi bila točka, v kateri bi gostota in gravitacijsko polje hkrati postajali neskončno veliki. Te gole singularnosti teorija sicer dopušča, a ob tem tudi kaže, da niso stabilne. Zato bi gole singularnosti izginile, se razpršile ali pa postale črne luknje.

Za zdaj, kot pravi dr. Novak, jih v naravi verjetno ni. Če pa bi kdaj dokazali ali opazili golo singularnost, bi bilo to nekaj zelo čudnega. Ne bi bila deterministična, ne bi mogli predvideti, kakšna informacija prihaja iz te gole singularnosti. S tem je povezana tudi hipoteza kozmične cenzure. Ta hipoteza pravi, da v vesolju ne more biti  golih singularnosti. To je samo hipoteza ali predpostavka, ki ni dokazana. Za zdaj  kaže, da so gole singularnosti nestabilne in zato res ne morejo obstajati.

Najbrž ob črno luknjo zlepa ne bomo trčili, ker je  predaleč. Vendar razmišljanje o takih pojavih pomaga k boljšemu razumevanju razvoja vesolja in našega mesta v njem. To daje Einsteinovi splošni teoriji relativnosti dodatno, kulturno dimenzijo, hkrati pa ob zapletenih in za Zemljane neobičajnih konceptih raziskovalci brusijo pristope, ki so uporabni tudi drugje.

Tudi v Franciji  se pojavlja podoben trend kot pri nas − številni diplomanti in celo doktorji fizike naredijo uspešne kariere na popolnoma drugih področjih, od financ do vodenja podjetij. Matematika in fizika sta  v Franciji na prvem mestu in ju uporabljajo  za selekcijo elite že v srednji šoli, tako da ima veliko pomembnih menedžerjev matematično in  fizikalno kulturo.

Poleg financ se študenti usmerijo tudi drugam. Najbolj originalna sprememba področja se mu je zdela, ko je nekdanji   študent in doktorand v njegovi  skupini postal igralec pokra. Prehod od fizike vse do igranja pokra se mu vendarle zdi seveda malo prevelik.


30.12.2019

Znanstveni vrhovi 2019

O fotografiji črne luknje, kvantni premoči, novih arheoloških najdiščih, napredujoči personalizirani medicini in vse bolj natančnih podnebnih napovedih: skozi vse leto smo lahko spremljali prebojne dosežke, ki so spremenili naš pogled na vesolje, zgodovino, tehnologijo in nenazadnje okolje. Prvič smo lahko videli prizore, ki jim človeško oko ni bilo priča še nikoli. Spoznavali smo, česa vsega še ne vemo o zgodovini naše vrste, in se hkrati spraševali, kakšna prihodnost nas čaka. Leto 2019 v znanosti je bilo vznemirljivo, zapuščina odkritij pa bo odmevala tudi v prihodnosti. Pregled znanosti v letu 2019 sta pripravila Maja Ratej in Jan Grilc.


12.12.2019

Nesojena Nobelovka Jocelyn Bell Burnell

Jocelyn Bell Burnell ima za sabo že več kot 50 let dela v astronomiji. Ampak njeno ključno odkritje se je zgodilo čisto na začetku. Prav na točki, ko je šele dobro začela svojo strokovno pot. Tedaj je nepričakovano naletela na nekaj, kar si sprva ni znala razložiti, in je odkritje v šali poimenovala kar »mali zeleni možje, Little Green Men«. Za svoje odkritje bi morala dobiti Nobelovo nagrado, a je ni. Dobil jo je njen mentor, kar je še danes eno od kontroverznih poglavij v zgodovini podeljevanja Nobelovih nagrad. Jocelyn Bell Burnell je v Oxford poklicala Maja Ratej.


05.12.2019

Iskanje zvočnih spominov različnih generacij

Zvoki nekega kraja vzbujajo spomine. Morda tudi tiste najbolj zabrisane in skoraj pozabljene. Prav take spomine iščejo raziskovalci v mednarodnem projektu Sensotra, ki prostovoljce opremijo s kamerami in mikrofoni in jih odpeljejo na sprehod po domačem kraju. Sprašujejo se, kako različne generacije zaznavajo in dojemajo mestno okolje, ki se hitro spreminja. Znanstveniki iz treh držav, podprti s sredstvi Evropskega raziskovalnega sveta, so za potrebe raziskovanja razvili povsem novo metodo, ki jih je pripeljala do nepričakovanih ugotovitev. O tem se pogovarjamo v Frekvenci X, kjer spremljamo najboljšo finsko visokošolsko profesorico s sodelavci iz treh držav na sprehodu po zvočnih spominih človeštva. Gosta: dr. Helmi Järviluoma, Univerza vzhodne Finske, dr. Rajko Muršič, profesor na Oddelku za etnologijo in kulturno antropologijo na ljubljanski Filozofski fakulteti. Oddajo je pripravil Jan Grilc.


28.11.2019

Danuvius je prva opica, ki je "stopila na dve nogi"

Pred 12 milijoni let se je na našem prostoru sprehajal Danuvius. “Danuvius je izjemna najdba, o kateri vemo nekaj dni, ne moremo govoriti, da je pol opica pol človek. To je opica,” trdi dr. Petra Golja z Biotehniške fakultete v Ljubljani. Pa čeprav gre za opico, je ta opica prva, ki je “stopila na dve nogi” – vsaj po do zdaj razpoložljivih podatkih. To je z raziskovalno skupino odkrila glavna raziskovalka paleontologinja dr. Madeline Bohme z nemške univerze v Tübingenu: “Odkritje je bilo veliko presenečenje za vse, saj smo ugotovili, da so kosti bolj podobne človeškim kot tistim velikih opic. Ob našem raziskovanju se je izkazalo, da je ta nova vrsta – Danuvius – hodila dvonožno.” Se je bipedalizem torej razvil dvakrat prej, kot smo doslej domnevali, in v Evropi, ne v Afriki, v kakšnih razmerah je živel Danuvius, bi ga lahko označili za evropsko Lucy …


21.11.2019

"Pozdrav od otrok planeta Zemlje"

Frekvenca X se tokrat podaja na razburljivo potovanje po brezmejnih medzvezdnih in galaktičnih širjavah. Kakšne so bile čisto prve galaktične jasli, kakšne zvezde so nastajale v njih, bo razložila profesorica na Kalifornijski univerzi v Davisu dr. Maruša Bradač. Zavihteli pa smo se tudi na krov legendarnih plovil Voyager, ki s seboj po vesolju nosita skrivnosten zapis o človeški civilizaciji. Kaj je zapisano na zlatih ploščah in kako bi jih lahko razumel nič hudega sluteči vesoljski sprehajalec milijone kilometrov stran, pa bosta pojasnila astrofizik dr. Tomaž Zwitter in glasbeni urednik in pisatelj Jonathan Scott.


14.11.2019

Akademskih 100: Avtonomija na preizkušnji

Ljubljanska univerza je ob ustanovitvi orala ledino v akademski sferi. Po 100 letih se je znašla v položaju, ko si znova postavlja ključna vprašanja glede svoje vloge v družbi. S kakšnim vetrom jadra univerza, ki se po eni strani lahko pohvali z izjemnimi raziskovalnimi dosežki, po drugi strani pa spopada z notranjimi aferami. Sklepna epizoda serije Akademskih 100. *Oddajo pripravljata Maja Ratej in Gašper Andrinek. Izbor glasbe Andrej Karoli. V oddaji so nastopili zaslužni profesor na Fakulteti za elektrotehniko v Ljubljani dr. Rafael Cajhen, profesor mikrobiologije dr. Blaž Stres, novinarka Tina Kristan, sociolog kulture dr. Rastko Močnik, filozof dr. Darko Štrajn, profesor na Fakulteti za strojništvo dr. Matevž Dular, profesor na Fakulteti za računalništvo in informatiko v Ljubljani dr. Ivan Bratko, podoktorska raziskovalka računalništva na Univerzi Stanford dr. Marinka Žitnik.


07.11.2019

Akademskih 100: Od Anke do Anje ... in sto let vmes

Prvi človek, ki je na ljubljanski univerzi doktoriral pred stoletjem, ni bil on, temveč ona. To je bila Anka Mayer Kansky, ena izmed tistih slovenskih izobraženk, ki so utrle pot novim generacijam žensk, da se lahko danes množično izobražujejo. Kdo je bila prva slovenska doktorica, kako se je na ljubljanski univerzi znašla prva učiteljica in zakaj je imela univerza v vsej stoletni zgodovini le eno rektorico? Serija: Akademskih 100 Epizoda: Od Anke do Anje ... in sto let vmes Oddajo pripravljata Maja Ratej in Gašper Andrinek


24.10.2019

Akademskih 100: Veter v jadrih upora

Med drugo svetovno vojno bi lahko ljubljansko univerzo z več gledišč označili za vir upora, legendarni Radio Kričač so na neki način zakrivili študenti elektrotehniške fakultete. Skoraj 20 let pozneje se je zgodila (kulturna) revolucija "baby boom" generacije, ki se je uprla svojim staršem. Zakaj je bila zasedba Filozofske fakultete 40 let pozneje drugačna, sploh pa, kako se je na to odzvala Univerza? Ta hip kaže, da se utegnejo mladi najprej kritično odzvati in se zaradi okoljskih groženj povezati med seboj. Zakaj jih ta tema tako podžiga? Se danes na univerzi še rojevajo progresivne in subverzivne ideje? Serija: Akademskih 100. Druga epizoda: Veter v jadrih upora. Oddajo pripravljata Maja Ratej in Gašper Andrinek


17.10.2019

Akademskih 100: Grad vedam dviga v beli se Ljubljani

Začenjamo miniserijo ob stoletnici ljubljanske univerze. Od že skoraj legendarnih začetkov je šlo skozi njene klopi več sto tisoč študentov, danes pa ji očitajo, da je napreden in liberalen veter, ki je sprva zavel po njej, zatohlo fevdalen, brez moči, da poraja nove sodobne miselne tokove. Kdo so bili izjemni posamezniki, vpeti v okovje te naše osrednje izobraževalne in raziskovalne ustanove, kaj si imajo čez stoleten prepad povedati njeni pionirji in sodobni nasledniki? Oddajo pripravljata Maja Ratej in Gašper Andrinek.


10.10.2019

Nobelove nagrade za leto 2019

Kozmologija in eksoplaneti, razvoj litij-ionskih baterij, pa pomen kisika za delovanje naših celic. To so letošnje prve tri Nobelove nagrade - za fiziko, kemijo in medicino. Zadnjo prav s področja obnašanja celic v telesu, ko se raven kisika v njih zniža. “Zaznavanje kisika ima res velik pomen - od tega, kako delujejo večcelični organizmi, do tega, da ima velik vpliv na različne bolezni, tudi na razvoj in nastanek raka,” pravi dr. Maja Čemažar z Onkološkega inštituta UKC Ljubljana. Z dr. Majo Čemažar, z dr. Andrejo Gomboc z UNG in z dr. Robertom Dominkom s Kemijskega inštituta smo pokomentirali letošnji Nobelov izbor.


03.10.2019

Tri nova radiovedna vprašanja

Ali ima vesolje vonj? Koliko megabajtov podatkov najdemo v prstnem odtisu? Koliko shujšamo med hojo v hribe zaradi pojenjajoče sile težnosti? Na tri čisto resna radiovedna vprašanja, ki so nam jih zastavili poslušalci, Maja Ratej in Jan Grilc s strokovnjaki iščeta čisto resne odgovore. V rubriki Frekvence X Radiovedni!


19.09.2019

IG Nobelove nagrade: Skozi humor se naredi refleksija znanosti

Pica kot zdrav obrok, preklinjanje v avtomobilu, znamke na spolnem udu in raziskava o nakladanju. To so IG Nobelove nagrade, ob razglasitvi katerih se najprej nasmejemo, potem pa zamislimo. Nagrade, ki jih podeljujejo že od leta 1991, omogočijo publiciteto tistim, nekoliko zapostavljenim temam. Koga – denimo – ne bi zanimalo, ali lahko redno uživa pico in ima ob tem manjše tveganje za nastanek določenih bolezni, ali pa, da preklinjanje v avtomobilu ne sprosti, temveč povzroči še več stresa. Z IG Nobelovimi nagrajenci in komentatorjem filozofom in fizikom dr. Sašem Dolencem bomo hodili po avanturističnih poteh razsvetljenskih možganskih hodnikov, ki ob žuborenju idej peljejo v raziskavo o nakladanju, ki je leta 2016 prejela IG Nobelovo nagrado za mir. Več v podkastu, ki sta ga pripravili Maja Stepančič in Uršula Zaletelj.


12.09.2019

Matematika je kot družabne igre, določiš pravila, po katerih igraš

Pitagora in njegovi učenci so verjeli, da je vse v vesolju mogoče matematično izraziti s števili. “Jaz matematiko primerjam z družabnimi igrami, ker tako kot pri igrah tudi pri matematiki nekako določiš pravila, na podlagi katerih boš igral,” pravi Marko Čmrlec, bodoči študent na Cambridgeu, olimpijec, ki je letos dosegel srebrno medaljo na mednarodni olimpijadi v matematiki v Veliki Britaniji. “Če nekdo doseže pohvalo, kaj šele medaljo, je to za tako mladega človeka življenjski uspeh,” pravi Andrej Guštin iz Društva matematikov, fizikov in astronomov Slovenije. Mladi olimpijci – Tevž Lotrič, Ema Mlinar in Marko Čmrlec, ki so poletne počitnice preživeli alternativno … “Je dobra nagrada, da greš za en teden v tujino. Ampak ne samo to, lahko se družiš z ljudmi, ki so ti podobni.” … so bili sogovorniki Frekvence X.


05.09.2019

Poletna znanstvena odkritja

Znanost tudi med poletjem ni na počitnicah. Dogajanje je bilo pestro – od tega, da smo se za las izognili srečanju z asteroidom, do tega, da podatke v tehnološkem svetu že zapisujejo na DNK, da je mikroplastika vse bolj pogosta priloga v naši pitni vodi, pa do tega, da so predniki naše človeške vrste po Evropi hodili že veliko veliko prej, kot se je domnevalo doslej. Nastopajo gigantski papagaj, računalniški čip s 400.000 jedri, robotska roka, ki jo usmerjamo s pomočjo misli, atomska ura, za celo stolpnico velik kup kamenja, štirje milijoni olimpijskih bazenov, planet WASP-38 b, balada biskajskih kitov in partija pokra z računalnikom. Pregled znanstvenega dogajanja sta pripravila Maja Ratej in Jan Grilc.


05.07.2019

Fizik Uroš Seljak med ameriško akademsko elito

V Ljubljani so se v teh dneh v okviru Svetovnega kongresa slovenskih fizikov zbrali naši fiziki in fizičarke, ki so se uveljavili na tujih univerzah in inštitutih. Med njimi slovenski strokovni javnosti predava tudi dr. Uroš Seljak, profesor fizike in sodirektor centra za astrofiziko na Univerzi Kalifornije v Berkleyju, ki je bil pred kratkim kot redni član sprejet v Nacionalno akademijo znanosti v Združenih državah Amerike. Več o tem, kaj mu pomeni včlanitev v najprestižnejšo ameriško znanstveno ustanovo in kako se v svojem profesionalnem življenju posveča iskanju temeljnih značilnosti vesolja s pomočjo kozmoloških opazovanj, pove v petek opoldne.


27.06.2019

Kaj v resnici sporoča serija Černobil

Ste kaj radioaktivni? Ali vas je nemara bolje vprašati, če ste kaj radiofobni? Frekvenca X si je ogledala HBO-jevo serijo Černóbil o največji jedrski nesreči v zgodovini, ki v javnosti sproža številne odzive. Po eni strani je najbolje ocenjena serija na IMDB, po drugi strani se nanjo zgrinjajo številni očitki o zavajanju s podatki. Kaj je res in kaj ne in kako je Černóbil znova potegnil na plano radiofobijo?


20.06.2019

Zelo žalostno bi bilo, če bi se izkazalo, da smo edina inteligentna vrsta v vesolju

Christine Jones Forman in Bill Forman sta zakonca in vrhunska ameriška strokovnjaka na področju rentgenske astronomije. Zaposlena na centru za astrofiziku Harvard Smithsonian sta se z odmevno črno luknjo v galaksiji M87 ukvarjala že dlje časa, ob tem pa več desetletij tako rekoč iz prve roke spremljala napredek na področju rentgenske astronomije. O majhnosti človeka v primerjavi z vesoljem, črnih luknjah, družinskem življenju z astronomijo, zlasti pa o žarkih X v astronomiji več rečemo ta četrtek točno opoldne.


10.06.2019

Frekvenca X na radijskem dvorišču: 50 let po velikem koraku za človeštvo

Siva, pusta, kraterjev polna, a vseeno navdihujoča – Luna. 50 let bo, odkar je Neil Armstrong kot prvi človek pustil svojo sled na našem edinem naravnem satelitu in na Zemljo sporočil tisto zgodovinsko: “To je majhen korak za človeka, a velik za človeštvo.” Pristanek na Luni je pomenil neverjeten napredek, naznanil je, da lahko človek s tehnologijo osvaja tudi prostrano vesolje, in odstrl novo raven tekmovanja med svetovnimi velesilami. Kakšen pečat je v družbi, politiki in znanosti pustil pristanek na Luni 20. julija 1969 in kako danes, petdeset let po tem zgodovinskem dogodku, Luna še preseneča, združuje, ločuje? Ob praznovanju rojstnega dneva Vala 202 smo pripravili javno snemanje Frekvence X na radijskem dvorišču, ki sta ga vodila Maja Stepančič in Jan Grilc. Gosti razprave: astrofizik dr. Tomaž Zwitter biokibernetik dr. Igor Mekjavič ameriški astronavt slovenskih korenin Ronald Šega astronom Andrej Guštin


06.06.2019

Človek 5/5: Samovozeča etika prihodnosti

Morda prihodnost ni še nikoli ponujala toliko nejasnosti in dilem kot danes. Lahko da nas bo umetna inteligenca nepovratno prehitela kot dirkalni avto. In vsak dan ponudila nekaj deset odkritij v rangu Nobelovih nagrad. Nekateri zagovarjajo scenarij, da bo umetna inteligenca celo prevzela nadzor nad človekom. V vsakem primeru bo treba s samovozečo prihodnostjo najti sožitje in jo pametno zavirati na mejnih območjih. A nobena tehnologija ni dobra ali slaba sama po sebi, pomembno je, kako jo uporabljamo ljudje, pomembne so družbene okoliščine, politične odločitve. Bi torej ob razvoju umetne inteligence potrebovali čim več ali čim manj regulacije, bi se morali vse večje prisotnosti umetne inteligence bati ali se je veseliti? Kje so realne in kje znanstvenofantastične meje? V epilogu serije Quo vadis, človek? o etiki razvoja in samovozečih dilemah človeka prihodnosti. Od Zemlje do vesolja. Od Rdeče kapice do robota. O tem, kako bi lahko tehnologije tudi pomagale pri reševanju okolja. Razmišljajo sogovorniki različnih strok. Avtorji: Luka Hvalc, Hana Hawlina, Jan Grilc


29.05.2019

Človek 4/5: Algoritmi demokracije

“Vojna je mir. Svoboda je suženjstvo. Nevednost je moč.” Tako je pred natanko 70 leti George Orwell zapisal v romanu 1984. Je imel prav? Možnost večje (tehnološke) izbire ne pomeni nujno svetlejše prihodnosti. Niti v osebnem niti v družbenem smislu. Veliko podatkovje, družabna omrežja in algoritmi spreminjajo demokracijo in na novo definirajo pravila igre. Ključno bo najti konsenz okrog uporabe umetne inteligence in ohranitve ideje demokracije. Hladna vojna je preteklost, družbe prihodnosti bodo poleg podnebnih sprememb ogrožale informacijske in trgovinske krize, morebitne zlorabe orožja, ki ga bo upravljala umetna inteligenca. Kako bo z varnostjo, bo država namesto vojakov imela polno “kasarno” vrhunskih hekerjev, strokovnjakov za algoritme in robotskih psihiatrov? Osrednja gosta 4. dela serije Quo vadis, človek?! sta filozofinja Renata Salecl in obramboslovec Uroš Svete. Avtorji: Luka Hvalc, Hana Hawlina in Jan Grilc


Stran 12 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov