Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Potovanje skozi čas

26.04.2012


Potovanje v času že od vekomaj buri človeško domišljijo. Če bi le lahko odpotovali v preteklost in popravili svoje napake ali pa skočili v prihodnost in si zapisali dobitno številko loterijskega žreba – kako navidezno sanjsko bi lahko bilo življenje časovnega popotnika.

A zdi se, da so to samo pobožne želje, ki jih zakoni časa in prostora v tem vesolju ne dopuščajo. Kolikor vemo, še nikomur ni uspelo zavrteti časa nazaj ali naprej.

Po mnenju slavnega britanskega fizika Stephena Hawkinga je najboljši dokaz za to, da je potovanje v času nemogoče, to, da med nami ni turistov iz prihodnosti. Če bi namreč bilo potovanje v času izvedljivo in bi ga ljudje v prihodnosti odkrili, potem bi morali biti med nami danes popotniki, ki so šli na izlet v preteklost.

A najsi bo ideja o časovnih skokih še tako nemogoča, si fiziki vseeno ne morejo pomagati, da ne bi o njej resno razmišljali in v svojih enačbah iskali skrite predore v preteklost in prihodnost. In tako se v njihovih glavah vsake toliko časa pojavi kakšna ideja o tem, kako bi lahko prelisičili navidezno trdno zacementirane zakone časa in odprli prepovedana vrata v preteklost ali prihodnost.

Prvi, ki je v fizikalnih zakonih našel časovno luknjo, je bil genialni avstrijski matematik Kurt Gödel. Ta je leta 1949 v Einsteinovih enačbah teorije relativnosti odkril, da bi bilo časovno potovanje mogoče, če bi se naše vesolje vrtelo.

Vrtenje vesolja bi namreč ustvarjalo časovne zanke, ki bi odpirale pot v preteklost ali prihodnost. V tem primeru bi bilo celotno vesolje nekakšen časovni stroj. A žal vse dosedanje meritve in raziskave kažejo, da se naše vesolje ne vrti, ampak lepo ždi pri miru, torej Gödelove časovne zanke v tem vesolju najbrž ne obstajajo.

Še bolj zanimiv pa je predlog, ki ga je leta 1988 predstavil ameriški teoretični fizik Kip Thorne. Thorne je predpostavil obstoj t.i. črvin v prostor-času, ki so nekakšen portal v preteklost ali prihodnost. Po mnenju nekaterih znanstvenikov, kot je Stephen Hawking, tovrstne črvine niso samo zanimiva teoretična iznajdba, ampak tudi dejansko obstajajo.

Obstajale naj bi vsepovsod okrog nas, vendar so žal premajhne, da bi jih lahko videli ali zaznali. V podmikroskopskim svetu, še dosti manjšem kot sami atomi, naj bi se črvine nenehno spontano pojavljale in izginjale in za kratke trenutke odpirale vrata v času.

Žal so te črvine velike samo miljardinko-triljoninko triljoninko centimetra, daleč premajhne, da bi lahko skoznje potoval kakšen atom, kaj šele človek. A nekateri znanstveniki verjamejo, da bi nekoč lahko ujeli takšno črvino, jo povečali ter s tem ustvarili pravcati časovni stroj.

Edina težava pri tem je, da bi pri tem potrebovali eksotično materijo z negativno energijo. Do danes še nihče ni videl ali dokazal, da bi takšna nenavadna materija res obstajala, zato časovni stroj iz črvine za zdaj še ostaja v sferi znanstvene-fantastike.

Rotirajoče vesolje in črvine pa niso edina teoretična pot do časovnih skokov. V zadnjih desetletjih so fiziki predlagali še precej drugih scenarijev, ki odpirajo portale v času od t.i. golih črnih lukenj, do asimetrično zvitih membran, ki jih predvideva teorija strun.

Če je namreč verjeti priznanemu nemškemu fiziku Heinrich Päsu, je v primeru, da ima naše vesolje več dimenzij, kot samo običajne štiri, kot napoveduje špekulativna teorija strun, potem je mogoče pod določenimi pogoji preko dodatnih dimenzij tudi potovati v času.

Spet drugi, kot je ruski matematik Igor Volovich, pa pravijo, da smo ljudje mogoče že izdelali prvi časovni stroj. Imenoval naj bi se veliki hadronski trkalnik, ki stoji v švicarskem raziskovalnem središču CERN.

Po Volovichovem mnenju ta največji pospeševalnik delcev na svetu pri silovitem zaletavanju delcev ustvarja tudi časovne luknje, ki osnovne delce pošilja na potovanje v času. Volovich zato verjame, da bi lahko dokaz, da je časovno potovanje mogoče, našli v prihodnjih letih v podzemnih predorih CERN-a.

A kljub vsem obetajočim teoretičnim možnostim časovnega popotovanja, pa še vedno obstaja nekaj velikih fizikalno-filozofskih ovir. Ena od najbolj očitnih je t.i. »paradoks dedka«, ki pravi, da bi lahko časovni popotnik skočil v preteklost in ubil svojega dedka, s čimer bi preprečil svoje rojstvo.

To bi povzročilo paradoks, ki bi ga bilo težko razrešiti, razen če v tej realnosti ne obstajajo vzporedna vesolja ali kaj podobnega. Ta in drugi paradoksi, ki jih povzroča časovno popotovanje, so navedli Stephena Hawkinga v to, da je razglasil t.i. domnevo kronološke zaščite, ki predpostavlja, da je naše vesolje narejeno tako, da potovanje v času v njem ni mogoče.

Odgovor na vprašanje, ali je mogoče potovati v času torej še ni dokončen, zato je zaželeno, da če kdaj srečate kakšnega turista iz prihodnosti, da ga napotite tudi do najbližjega fizika.

———

INTERVJU


Prof. Heinrich Päs s Tehniške univerze v Dortmundu je že bil naš gost v oddaji o tahionih. Je avtor knjige Die perfekte Welle(Popolni val) o nevrtinih, dodatnih dimenzijah in potovanju skozi čas. Prihodnje leto bo v založbi Harvard University Press izšel tudi angleški prevod.

Nazadnje ko sva govorila o eksperimentu OPERA in novici, da tahioni morda potujejo hitreje kot svetloba, ste rekli, da ste vznemirjeni in hkrati skepitični. Podobno jaz razmišljam o potovanju skozi čas. Je to resna znanstvena tema ali bolj domena teoretičnih špekulacij in znanstvene fantastike?

Da, to je res nekoliko eksotična tema, vendar pa se številni znanstveniki z njo vseeno ukvarjajo. To je sicer teoretična špekulacija, ampak je na drugi strani resna. Obstajajo resni znanstveniki, ki svoj čas posvečajo vprašanju, ali je potovanje skozi čas mogoče ali ne. Torej so to resne raziskave, a špekulativne v tem smislu, da rezultatov teh teorij ta trenutek še ni mogoče eksperimentalno preveriti. Kljub temu pa lahko iz teh raziskav že danes poglabljamo svoje razumevanje o samem konceptu časa, Einsteinovi teoriji relativnosti in kvantni gravitaciji.

Katera od teoretičnih idej za potovanje v času je po vašem najbolj obetajoča? So mogoče to t.i. črvine ali pa dodatne dimenzije v teoriji strun?

To je težko presoditi. Dodatne dimenzije niso tako zelo različne od črvin, saj imajo določene lastnosti. Dodatne dimenzije se lahko obnašajo popolnoma krotko in ne dovoljujejo potovanja v času, če pa so zvite na določen način, potem so podobne črvinam in imajo podobne lastnosti. Imajo tudi nekaj prednosti pred črvinami v tem smislu, da za zdaj še nihče ni videl črvine, torej so, če obstajajo, najbrž daleč proč, medtem ko se dodatne dimenzije mogoče skrivajo že za naslednjim vogalom. Prav tako nekateri problemi, ki so povezani s prostorom in časom pri črvinah, kot je potreba po eksotični materiji in energiji, v primeru dodatnih dimenzij niso tako žgoči.

Nam lahko na razumljiv način pojasnite, kako bi bilo mogoče skozi črvine potovati v času?

Torej, v osnovi črvina predstavlja povezavo oziroma bližnjico med dvema točkama v prostoru, ki sta ločeni z veliko razdaljo. Ker v Einsteinovi teoriji posebne relativnosti koncept sočasnosti ni jasno opredeljen, lahko v primeru dveh dogodkov, ki sta ločena z veliko razdaljo v prostoru, obrnemo časovni vrstni red teh dveh dogodkov. Se pravi, če bi skočili v črvino, bi vas oseba, ki bi vas opazovala, videla, da ste iz črvine na drugem koncu iztopili še preden ste skočili notri. Torej bi bilo to resnično potovanje v času, naredili bi krog v prostoru, v času pa bi prispeli, preden ste štartali.

Bi lahko v bližnji prihodnosti tudi dokazali, da je mogoče potovati v času? Nekateri verjamejo, da bi takšne eksperimente naredili v švicarskem CERN-u?

Odvisno je od tega, kako bi lahko ustvarili to zanko v prostoru in času. Če bi bilo to prek dodatne dimenzije, potem bi bilo v pomoč, če bi lahko pripravili delce, ki lahko potujejo v to dodatno dimenzijo. Osebno sem pred časom skupaj s Tomom Weilerjem iz univerze Vanderbilt predlagal, da bi lahko za to uporabili nevtrine, ki bi lahko ubrali bližnjico čez prostor in čas in tako na cilj prispeli, preden so začeli potovanje. Podobno je Tom Weiler predlagal, da bi v Cernu lahko nekako našli način, da bi ustvarili eksotične gostote energije, s katerimi bi upognili prostor inčas in s tem ustvarili časovni stroj. Same črvine bi lahko iskali tudi v vesolju. Torej, odvisno od tega, kakšen časovni stroj iščete, so potem načini, kako jih eksperimentalno testirati. Vsi ti testi so zahtevni in bodo izvedljivi mogoče nekoč v prihodnosti.

Ali verjamete, da bomo ljudje kdaj v prihodnosti lahko končno zgradili časovni stroj? Med drugim bi kaj takšnega vodilo do resnih zapletov, kot je na primer »paradoks dedka«.

V kvantni fiziki obstajajo ideje, da bi lahko realnost zapolnjevali vzporedni svetovi. Pri tem se ob vsakem dogodku zgodijo vse potencialne možnosti, ki se odvijejo sočasno v paralelnih vesoljih. To se sicer sliši zelo eksotično, če pa na to pogledate bolj resno, potem je to najmanj kontradiktorna interpretacija kvantne fizike. Če torej to vzamete resno, potem bi časovni potnik pri skoku v preteklost dejansko pristal v vzporednem vesolju, kjer bi lahko ubil svojega dedka, vendar to nanj ne bi imelo vpliva, saj bi dedek, ki živi v njegovem vesolju, ostal živ. S tem se torej izognemo temu paradoksu. Na drugi strani pa na primer pristopi h kvantni gravitaciji favorizirajo pogled, da sta čas in svobodna volja iluzija in da je vse, kar se zgodi, že določeno, torej se že po definiciji ne more zgoditi nič protislovnega.


Frekvenca X

694 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Potovanje skozi čas

26.04.2012


Potovanje v času že od vekomaj buri človeško domišljijo. Če bi le lahko odpotovali v preteklost in popravili svoje napake ali pa skočili v prihodnost in si zapisali dobitno številko loterijskega žreba – kako navidezno sanjsko bi lahko bilo življenje časovnega popotnika.

A zdi se, da so to samo pobožne želje, ki jih zakoni časa in prostora v tem vesolju ne dopuščajo. Kolikor vemo, še nikomur ni uspelo zavrteti časa nazaj ali naprej.

Po mnenju slavnega britanskega fizika Stephena Hawkinga je najboljši dokaz za to, da je potovanje v času nemogoče, to, da med nami ni turistov iz prihodnosti. Če bi namreč bilo potovanje v času izvedljivo in bi ga ljudje v prihodnosti odkrili, potem bi morali biti med nami danes popotniki, ki so šli na izlet v preteklost.

A najsi bo ideja o časovnih skokih še tako nemogoča, si fiziki vseeno ne morejo pomagati, da ne bi o njej resno razmišljali in v svojih enačbah iskali skrite predore v preteklost in prihodnost. In tako se v njihovih glavah vsake toliko časa pojavi kakšna ideja o tem, kako bi lahko prelisičili navidezno trdno zacementirane zakone časa in odprli prepovedana vrata v preteklost ali prihodnost.

Prvi, ki je v fizikalnih zakonih našel časovno luknjo, je bil genialni avstrijski matematik Kurt Gödel. Ta je leta 1949 v Einsteinovih enačbah teorije relativnosti odkril, da bi bilo časovno potovanje mogoče, če bi se naše vesolje vrtelo.

Vrtenje vesolja bi namreč ustvarjalo časovne zanke, ki bi odpirale pot v preteklost ali prihodnost. V tem primeru bi bilo celotno vesolje nekakšen časovni stroj. A žal vse dosedanje meritve in raziskave kažejo, da se naše vesolje ne vrti, ampak lepo ždi pri miru, torej Gödelove časovne zanke v tem vesolju najbrž ne obstajajo.

Še bolj zanimiv pa je predlog, ki ga je leta 1988 predstavil ameriški teoretični fizik Kip Thorne. Thorne je predpostavil obstoj t.i. črvin v prostor-času, ki so nekakšen portal v preteklost ali prihodnost. Po mnenju nekaterih znanstvenikov, kot je Stephen Hawking, tovrstne črvine niso samo zanimiva teoretična iznajdba, ampak tudi dejansko obstajajo.

Obstajale naj bi vsepovsod okrog nas, vendar so žal premajhne, da bi jih lahko videli ali zaznali. V podmikroskopskim svetu, še dosti manjšem kot sami atomi, naj bi se črvine nenehno spontano pojavljale in izginjale in za kratke trenutke odpirale vrata v času.

Žal so te črvine velike samo miljardinko-triljoninko triljoninko centimetra, daleč premajhne, da bi lahko skoznje potoval kakšen atom, kaj šele človek. A nekateri znanstveniki verjamejo, da bi nekoč lahko ujeli takšno črvino, jo povečali ter s tem ustvarili pravcati časovni stroj.

Edina težava pri tem je, da bi pri tem potrebovali eksotično materijo z negativno energijo. Do danes še nihče ni videl ali dokazal, da bi takšna nenavadna materija res obstajala, zato časovni stroj iz črvine za zdaj še ostaja v sferi znanstvene-fantastike.

Rotirajoče vesolje in črvine pa niso edina teoretična pot do časovnih skokov. V zadnjih desetletjih so fiziki predlagali še precej drugih scenarijev, ki odpirajo portale v času od t.i. golih črnih lukenj, do asimetrično zvitih membran, ki jih predvideva teorija strun.

Če je namreč verjeti priznanemu nemškemu fiziku Heinrich Päsu, je v primeru, da ima naše vesolje več dimenzij, kot samo običajne štiri, kot napoveduje špekulativna teorija strun, potem je mogoče pod določenimi pogoji preko dodatnih dimenzij tudi potovati v času.

Spet drugi, kot je ruski matematik Igor Volovich, pa pravijo, da smo ljudje mogoče že izdelali prvi časovni stroj. Imenoval naj bi se veliki hadronski trkalnik, ki stoji v švicarskem raziskovalnem središču CERN.

Po Volovichovem mnenju ta največji pospeševalnik delcev na svetu pri silovitem zaletavanju delcev ustvarja tudi časovne luknje, ki osnovne delce pošilja na potovanje v času. Volovich zato verjame, da bi lahko dokaz, da je časovno potovanje mogoče, našli v prihodnjih letih v podzemnih predorih CERN-a.

A kljub vsem obetajočim teoretičnim možnostim časovnega popotovanja, pa še vedno obstaja nekaj velikih fizikalno-filozofskih ovir. Ena od najbolj očitnih je t.i. »paradoks dedka«, ki pravi, da bi lahko časovni popotnik skočil v preteklost in ubil svojega dedka, s čimer bi preprečil svoje rojstvo.

To bi povzročilo paradoks, ki bi ga bilo težko razrešiti, razen če v tej realnosti ne obstajajo vzporedna vesolja ali kaj podobnega. Ta in drugi paradoksi, ki jih povzroča časovno popotovanje, so navedli Stephena Hawkinga v to, da je razglasil t.i. domnevo kronološke zaščite, ki predpostavlja, da je naše vesolje narejeno tako, da potovanje v času v njem ni mogoče.

Odgovor na vprašanje, ali je mogoče potovati v času torej še ni dokončen, zato je zaželeno, da če kdaj srečate kakšnega turista iz prihodnosti, da ga napotite tudi do najbližjega fizika.

———

INTERVJU


Prof. Heinrich Päs s Tehniške univerze v Dortmundu je že bil naš gost v oddaji o tahionih. Je avtor knjige Die perfekte Welle(Popolni val) o nevrtinih, dodatnih dimenzijah in potovanju skozi čas. Prihodnje leto bo v založbi Harvard University Press izšel tudi angleški prevod.

Nazadnje ko sva govorila o eksperimentu OPERA in novici, da tahioni morda potujejo hitreje kot svetloba, ste rekli, da ste vznemirjeni in hkrati skepitični. Podobno jaz razmišljam o potovanju skozi čas. Je to resna znanstvena tema ali bolj domena teoretičnih špekulacij in znanstvene fantastike?

Da, to je res nekoliko eksotična tema, vendar pa se številni znanstveniki z njo vseeno ukvarjajo. To je sicer teoretična špekulacija, ampak je na drugi strani resna. Obstajajo resni znanstveniki, ki svoj čas posvečajo vprašanju, ali je potovanje skozi čas mogoče ali ne. Torej so to resne raziskave, a špekulativne v tem smislu, da rezultatov teh teorij ta trenutek še ni mogoče eksperimentalno preveriti. Kljub temu pa lahko iz teh raziskav že danes poglabljamo svoje razumevanje o samem konceptu časa, Einsteinovi teoriji relativnosti in kvantni gravitaciji.

Katera od teoretičnih idej za potovanje v času je po vašem najbolj obetajoča? So mogoče to t.i. črvine ali pa dodatne dimenzije v teoriji strun?

To je težko presoditi. Dodatne dimenzije niso tako zelo različne od črvin, saj imajo določene lastnosti. Dodatne dimenzije se lahko obnašajo popolnoma krotko in ne dovoljujejo potovanja v času, če pa so zvite na določen način, potem so podobne črvinam in imajo podobne lastnosti. Imajo tudi nekaj prednosti pred črvinami v tem smislu, da za zdaj še nihče ni videl črvine, torej so, če obstajajo, najbrž daleč proč, medtem ko se dodatne dimenzije mogoče skrivajo že za naslednjim vogalom. Prav tako nekateri problemi, ki so povezani s prostorom in časom pri črvinah, kot je potreba po eksotični materiji in energiji, v primeru dodatnih dimenzij niso tako žgoči.

Nam lahko na razumljiv način pojasnite, kako bi bilo mogoče skozi črvine potovati v času?

Torej, v osnovi črvina predstavlja povezavo oziroma bližnjico med dvema točkama v prostoru, ki sta ločeni z veliko razdaljo. Ker v Einsteinovi teoriji posebne relativnosti koncept sočasnosti ni jasno opredeljen, lahko v primeru dveh dogodkov, ki sta ločena z veliko razdaljo v prostoru, obrnemo časovni vrstni red teh dveh dogodkov. Se pravi, če bi skočili v črvino, bi vas oseba, ki bi vas opazovala, videla, da ste iz črvine na drugem koncu iztopili še preden ste skočili notri. Torej bi bilo to resnično potovanje v času, naredili bi krog v prostoru, v času pa bi prispeli, preden ste štartali.

Bi lahko v bližnji prihodnosti tudi dokazali, da je mogoče potovati v času? Nekateri verjamejo, da bi takšne eksperimente naredili v švicarskem CERN-u?

Odvisno je od tega, kako bi lahko ustvarili to zanko v prostoru in času. Če bi bilo to prek dodatne dimenzije, potem bi bilo v pomoč, če bi lahko pripravili delce, ki lahko potujejo v to dodatno dimenzijo. Osebno sem pred časom skupaj s Tomom Weilerjem iz univerze Vanderbilt predlagal, da bi lahko za to uporabili nevtrine, ki bi lahko ubrali bližnjico čez prostor in čas in tako na cilj prispeli, preden so začeli potovanje. Podobno je Tom Weiler predlagal, da bi v Cernu lahko nekako našli način, da bi ustvarili eksotične gostote energije, s katerimi bi upognili prostor inčas in s tem ustvarili časovni stroj. Same črvine bi lahko iskali tudi v vesolju. Torej, odvisno od tega, kakšen časovni stroj iščete, so potem načini, kako jih eksperimentalno testirati. Vsi ti testi so zahtevni in bodo izvedljivi mogoče nekoč v prihodnosti.

Ali verjamete, da bomo ljudje kdaj v prihodnosti lahko končno zgradili časovni stroj? Med drugim bi kaj takšnega vodilo do resnih zapletov, kot je na primer »paradoks dedka«.

V kvantni fiziki obstajajo ideje, da bi lahko realnost zapolnjevali vzporedni svetovi. Pri tem se ob vsakem dogodku zgodijo vse potencialne možnosti, ki se odvijejo sočasno v paralelnih vesoljih. To se sicer sliši zelo eksotično, če pa na to pogledate bolj resno, potem je to najmanj kontradiktorna interpretacija kvantne fizike. Če torej to vzamete resno, potem bi časovni potnik pri skoku v preteklost dejansko pristal v vzporednem vesolju, kjer bi lahko ubil svojega dedka, vendar to nanj ne bi imelo vpliva, saj bi dedek, ki živi v njegovem vesolju, ostal živ. S tem se torej izognemo temu paradoksu. Na drugi strani pa na primer pristopi h kvantni gravitaciji favorizirajo pogled, da sta čas in svobodna volja iluzija in da je vse, kar se zgodi, že določeno, torej se že po definiciji ne more zgoditi nič protislovnega.


21.05.2015

Alojz Kodre, fizik in prevajalec

Alojz Kodre, fizik in prevajalec, je zaslužni profesor z ljubljanske Fakultete za matematiko in fiziko. Profesor, ki ga študentje izjemno cenijo, je z modelsko analizo nadgradil matematično fiziko, katere znanje je tudi danes ena osrednjih primerjalnih prednosti slovenskih fizikov doma in v svetu, dobro pa poznajo tudi njegov prispevek k eksperimentalni fiziki atomov.


14.05.2015

Potresi

Nedavni uničujoči potres je sicer tla v Nepalu stresel z magnitudo 7,8 in s tem pustil močan pečat tudi na tamkajšnjem površju: Mount Everest naj bi se nekoliko znižal, celotna gorska veriga Anapurne naj bi bila višja, nekateri predeli celo za meter in pol, tla v bližini prestolnice Katmandu pa naj bi se ponekod premaknila tudi do treh metrov. Kakšne sile torej delujejo ob tako silovitih potresih in kateri nedavni potresi so najbolj oblikovali površje Zemlje.


07.05.2015

Možgani na sodišču

Zgodovinarji bodo nekoč zapisali, da je nevroznanost začela posegati v ameriški sodni sistem, ko se je v začetku devetdesetih let 20. stoletja neki bogat direktor deloma izmazal pred kazensko odgovornostjo tako, da je ob pomoči strokovnjakov sodišče prepričal, da zločina ni storil on, ampak njegova cista. So možgani res vedno odgovorni za svoja dejanja? Kakšne olajševalne okoliščine lahko upoštevajo sodišča? Raziskujemo z ameriškim nevroznanstvenikom dr. Jamesom Fallonom in s filozofinjo dr. Renato Salecl z Inštituta za kriminologijo na Pravni fakulteti v Ljubljani.


30.04.2015

Dr. Mitja Mastnak, slovenski matematik v Kanadi

Je doktor matematike, specialist za algebro, leta 1993 je kot gimnazijec na matematični olimpijadi v Istanbulu osvojil bronasto medaljo. Po diplomi na ljubljanski univerzi je odšel na doktorski študij v Kanado. In ostal, si ustvaril akademsko kariero in družino. Dr. Mitja Mastnak je izredni profesor na univerzi St. Mary’s v Halifaxu, začasno nekaj tednov gostuje na Fakulteti za matematiko in fiziko v Ljubljani. Pogovarjali smo se o univerzitetnih in znanstvenih pogojih v Kanadi, primerjavi s Slovenijo in Evropo, honorarjih, motiviranosti študentov, kakovosti življenja …


23.04.2015

Sverre Aarseth, mojster vesoljskega plesa

Dr. Sverre Aarseth je legendarni astrofizik z Inštituta za astronomijo Univerze v Cambridgeu in skoraj vsakemu astrofiziku na svetu vzbudi hvaležnost, saj je razvil in z drugimi delil zelo učinkovite računalniške programe za preračunavanje interakcije med veliko telesi v vesolju. Lahko bi mu rekli kar mojster vesoljskega plesa.


16.04.2015

Neil de Grass Tyson

Tokratna Frekvenca X je nastala v sodelovanju s podcastom Številke na našem Multimedijskem portalu. Skupaj z avtorjem podcasta Slavkom Jeričem smo gostili priznanega komunikatorja znanosti Neila deGrassa Tysona.


09.04.2015

Komuniciranje znanosti

Minuli konec tedna so v Cernu po dveh letih znova zagnali Veliki hadronski trkalnik. Vrača se prenovljen in izpopolnjen, tako da se lahko nadejamo novih odkritij, ki bodo premikala meje sodobne fizike. A v tokratni Frekvenci X nas ne bo zanimala izjemno kompleksna »cernovska« fizika, temveč kako je znanstvenikom uspelo, da so iz nje v zgolj nekaj letih naredili medijsko vročo temo. Je za to res kriv Dan Brown z Angeli in demoni, prodorna uporaba Twitterja ali iznajdljivo trkanje na radovednost ljudi, bomo izvedeli v pogovoru z vodjo pisarne za komuniciranje z javnostjo v CERN-u. To je dr. James Gilles.


02.04.2015

Laniakea, naš širši galaktični dom

S Frekvenco X smo se podali v največja nadstropja narave, v neizmerno vesolje, kjer se plin združuje v zvezde, skupine zvezd pa v galaksije. Naša gostja bo profesorica Hélene Courtois ( Elen Kurtva) z Univerze v Lyonu, ki je lani s havajskimi kolegi odkrila, da je naša Rimska cesta del jate galaksij, ki so jo poimenovali Laniakea. V havajščini Laniakea pomeni neizmerljivo vesolje, ki pa ga je Hélene Courtois in njenim kolegom vseeno uspelo izmeriti.


26.03.2015

3 D tisk v medicini

Predstavljajte si, da ste v dolgi vrsti za transplantacijo organa. In zdaj pomislite, da bi nove sklepe, ledvica ali celo srce dobili kar s pomočjo 3D tiska? Prvi poskusi biotiska s pomočjo pravih celic segajo tik pred leto 2000, ko so prvič uporabili metodo biotiskanja, 3D-tiskanja z živimi celicami, za ustvarjanje umetnega mehurja. V nekaj letih je vse več raziskovalnih skupin iz različnih laboratorijih začelo razvijati ali spreminjati tiskalnike za tiskanje celic v treh dimenzijah.


19.03.2015

Fizika smučarskih skokov

Skupaj z očetom velikanke Janezom Goriškom smo obujali spomine na nastajanje letalnice velikanke in nekdanje rekorde v Planici ter preizkusili najnovejši simulator smučarskih skokov v Planici.


12.03.2015

Možgani zmagovalcev

Znanstvene raziskave so dokazale, da pride po zmagi pri zmagovalcu do dviga ravni testosterona in posledično tudi do večje agresivnosti pri naslednjem spopadu. Pojav ni značilen le za živali, ampak ga lahko opazimo tudi pri ljudeh, še posebej v športu. Gosta oddaje sta ugledni irski nevroznanstvenik prof. Ian Robertson in slovenski športni psiholog Aleš Vičič.


05.03.2015

Davno srečanje temne zvezde in sonca

V znanosti so odkritja le redko plod naključja, na drugi strani pa nikoli ni mogoče vedeti vnaprej, kaj boste odkrili. Tako je lani dr. Ralf Scholz iz Potsdama odkril zelo temno zvezdo v bližini našega Sonca, ki so jo kmalu poimenovali Scholzeva zvezda. Profesor Eric Mamajek (izg.:Memedžek), ki je eden največjih strokovnjakov za preučevanje okolice našega Sonca, pa je odkril, da je ta zvezda pred 70 tisoč leti potovala relativno blizu Sonca in je v tem pogledu naša doslej najbližja poznana obiskovalka. S profesorjem Mamajekom se bomo pogovarjali o njegovem odkritju in o vplivu takih mimoletov na komete v našem Osončju, pa seveda, kdaj si lahko obetamo, da bomo morebitne bodoče zvezdne obiskovalce poznali vnaprej.


19.02.2015

Psihologija strahu

Strah je osnovno čustvo in pri večini vzbuja neprijetne občutke. Pomislili bi celo, da je neustrašnost blagoslov. A to ni res. Strah je osnovni mehanizem, ki vklaplja preživetveni nagon, saj nas v nevarnosti pripravi na boj ali beg. Medicina pozna primere, ko ljudje ne čutijo strahu, zato pa so v nenehni nevarnosti. Gosta sta profesor dr. Grega Repovš in Stane Kranjc.


12.02.2015

Modrost psihopatov

Kaj se lahko naučimo od psihopatov? Tudi to, da če nas čaka neprijetno opravilo se ga je najbolje lotiti takoj, brez odlašanja. Psihopati sicer znajo biti izjemno šarmantni in karizmatični, če jim to pomaga pri doseganju zastavljenega cilja, a šarmantnost se lahko hitro spremeni v grobo brezobzirnost, ko presodijo, da ima takšna taktika večje možnosti za uspeh. Kako prepoznati psihopate, kako se z njimi soočiti in kaj se lahko od njih naučimo? Gosta: Dr. Kevin Dutton, profesor na Univerzi Oxford in Doc. dr. Maja Rus Makovec, psihiatrinja.


05.02.2015

FX fuzija

Poraba energije se v svetu izjemno povečuje, fosilna goriva so omejena, najti je treba bogat in čist vir energije. Kot ena izmed možnosti se kaže fuzijska energija, proizvod jedrske fuzije, procesa zlivanja vodikovih atomskih jeder, ki z energijo oskrbuje tudi naše sonce. To je proces, ki je nasproten jedrski fiziji oziroma cepitvi atomskih jeder, ki se uporablja v sodobnih jedrskih reaktorjih. O tem, kako ustvariti majhno sonce na Zemlji, kot svojim prizadevanjem ljubkovalno pravijo znanstveniki na področju fuzije, se bomo v Frekvenci X pogovarjali z vodjo evropskega programa EUROfusion Tonyjem Donnejem, obiskali pa bomo tudi pospeševalnik v Reaktorskem centru Inštituta Jožef Štefan.


29.01.2015

Izginjajoči kromosom Y

Osnovna biološka razlika med moškim in žensko je ta, da ima ženska ima v svojih celicah dve kopiji spolnega kromosoma X, moški pa X in Y. Kromosom Y moškega naredi moškega. X in Y sta bila nekoč enako velika, nato pa se je začel kromosom Y krčiti in izgubljati gene. Po prepričanju nekaterih genetikov se ta proces degeneracije nadaljuje. A moški še ne bodo izumrli, pomirja profesor Darren Griffin z Univerze Kent v Veliki Britaniji.


22.01.2015

Druga doba strojev

“Srečni posamezniki, ki bodo vseeno lahko udeleženi pri kakem kreativnem opravilu, bodo predstavljali resnično elito človeštva … V družbi prisilnega brezdelja bo postala najbolj cenjena beseda – delo!” Tako je pred 50 leti zapisal Isaac Asimov, avtor znanstvene-fantastike. Morda se je vseeno malo zmotil, a pravilno je napovedal, da bomo leta 2015 uporabljali Skype, si kuhali kavo s pritiskom na gumb in da bodo vedno več del prevzemali roboti … Računalniki podvojijo svoje procesorske zmožnosti približno vsako leto in pol. Sedaj imamo v svojih žepih pametne telefone, v katere so vgrajeni procesorji, ki so tako hitri, kot so bili pred nekaj desetletji le zelo dragi superračunalniki.


15.01.2015

Največje oko zazrto v nebo

O vesolju še zdaleč ne vemo vsega, poznamo le 4 odstotke. Preostanek je temna snov in temna energija, kar smo spoznali tudi po zaslugi teleskopov, ki so pripomogli k številnim odkritjem, na katera še pred petnajstimi leti nismo niti pomislili. Prejšnji mesec pa je dobil dokončno zeleno luč za konstrukcijo Evropski ekstremno veliki teleskop (E-ELT). Gre za daleč najzmogljivejši astronomski teleskop na Zemlji, ki bo opazoval vesolje v vidni in infrardeči svetlobi.


08.01.2015

Čar zemljinih polov

Severni in južni pol Zemlje sta v zgodovini vedno burila domišljijo, v ta večni led in sneg so se podajali številni pogumni osvajalci, danes pa so brezmejna bela prostranstva predvsem začasni dom številnih raziskovalnih ekip. Na Antarktiko smo poklicali mlado meteorologinjo Mairi Simms, z britanskim znanstvenikom Jonom Shanklinom se bomo spomnili odkritja velikanske ozonske luknje pred natanko 30-imi leti, z dansko znanstvenico Dorthe Dahl-Jensen pa pogledali globoko v zgodovino ledenih poledenitev. Svet tam daleč ni le hladen in zato romantično lep, je tudi trpko opozorilo, kako krhko je zemeljsko podnebno ravnovesje.


01.01.2015

Znanstveni presežki 2014

Pristanek sonde Rosetta na kometu, odkritje najstarejše zvezde na svetu, izum modrih LED diod, najdba okostja največjega dinozavra, rekordno globalno segrevanje ... To je le nekaj dosežkov, ki smo jih osvetlili v pregledni oddaji Frekvenca X.


Stran 22 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov