Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Sverre Aarseth, mojster vesoljskega plesa

23.04.2015

Dr. Sverre Aarseth je legendarni astrofizik z Inštituta za astronomijo Univerze v Cambridgeu in skoraj vsakemu astrofiziku na svetu vzbudi hvaležnost, saj je razvil in z drugimi delil zelo učinkovite računalniške programe za preračunavanje interakcije med veliko telesi v vesolju. Lahko bi mu rekli kar mojster vesoljskega plesa.

Sverre Aarseth je legendarni astrofizik z Inštituta za astronomijo Univerze v Cambridgeu in ta znanstvenik je človeštvu dal vsaj dvoje: prvič, to je bila vse od leta 1961 naprej veriga računalniških programov, v katere je znal izjemno učinkovito vpletati zadnja dognanja z različnih področij in ki so omogočali računati gravitacijski privlak med veliko telesi ter tako ponazarjati strukturo in razvoj zelo različnih sistemov v vesolju: od leta 1961 še novih umetnih satelitov prek lun do skupin zvezd in eksotičnih okolij v bližini črnih lukenj.

In drugič, Sverre je bil eden prvih, ki je svoja orodja brez omejitev delil z drugimi ter jim pomagal pri njihovi uporabi in nadgradnji. Tako je pomagal vzpostaviti sistem v astronomiji zelo uveljavljenega skupnega svetovnega razvoja novega znanja, kjer ni tako pomembno, kdo je kaj naredil, ampak da smo se vsi skupaj naučili razumeti nekaj novega. Lahko bi mu rekli kar mojster vesoljskega plesa.

Prof. dr. Tomaž Zwitter,delo dr. Sverreja Aarsetha je v celoti posvečeno posledicam Newtonovega gravitacijskega zakona. Na začetku velja pojasniti, kaj še manjka gravitacijskemu zakonu, saj vemo, da ga je že v 17. stoletju opisal Isaac Newton. 

Gravitacijski zakon je za najpreprostejši, vendar še vedno zapleten primer, ko imamo le dve telesi, od časa Isaaca Newtona pa do 19. stoletja znanstvenikom uspelo temeljito raziskati. Poiskali so tudi enačbe, ki popisujejo njegove rešitve. Žal že sistema treh ali več teles ni mogoče tako rešiti. Nujna je uporaba računalnikov, ki sproti računajo rešitve in nam razkrivajo neverjetno bogastvo različnih možnosti.

 Zakaj pa bi radi izračunali, kako se vede združba veliko delcev v vesolju?

Telesa v vesolju so pogosto daleč vsaksebi, tako sodelujejo predvsem z medsebojnim gravitacijskim privlakom. Vzemiva naše Osončje, kjer na prvi pogled poznamo skoraj vse. Položaje večjih teles v Osončju poznamo na približno meter natančno, in to čeprav se razdalje med njimi merijo v stotinah milijonov kilometrov. Podobno izjemno natančno poznamo tudi hitrost njihovega gibanja. Vendar nas tudi v našem Osončju zanimajo časovne spremembe in njegov razvoj. Kakšnih 200 milijonov let naprej ali nazaj je danes z računalniškimi programi Sverreja Aarsetha mogoče priti, pri daljših časih pa se poznajo kaotični vplivi majhnih motenj med telesi. Kot drugo skrajnost lahko vzameva našo Galaksijo. Namesto osmih planetov in nekaj tisočev manjših teles kot v našem Osončju nas v naši Galaksiji zanima gibanje milijard zvezd. Spet so računalniški programi našega gosta tisti, ki bodo meritve današnjega položaja in gibanja milijarde zvezd, ki jih ravnokar opravlja vesoljska misija Gaja, lahko preslikali v sliko Galaksije pred milijardami let. Morda bomo spoznali celo, kakšna je bila naša Galaksija ob svojem nastanku.

 Vse to računalniško programiranje daje slutiti človeka, ki je sicer prijazen, vendar noč in dan ždi pred računalniškim zaslonom.

Dr. Sverre Aarseth bo julija dopolnil 81 let. Spoznala sva se pred 15 leti na konferenci v Bormiu. Tam smo mu nekega prostega popoldneva vsi precej zadihani sledili na enega izmed tritisočakov nad prelazom Stelvio. Ko 66-letnik prehiti kolege, ki bi jim lahko bil oče, to seveda pove, da Sverre ni kabinetni človek. Pri 40 letih je dotedanje razvedrilo igranja dopisnega šaha, v katerem je mednarodni mojster, zamenjal za solo gorniška potepanja po našem planetu. Podobno kot pri njegovih računalniških programih, ki so presegali hitrostne rekorde, ga je redkokdo lahko dohajal tudi v gorah. Svoja doživetja zadnjih štirih desetletij je lani opisal v knjigi Prigode brezbrižnega ljubitelja. Knjiga je izjemno branje, pri katerem se ne morem znebiti vtisa, da se – tako kot žilavi Vikingi – tudi Norvežan Sverre Aarseth ne zna hvaliti, ampak mora bližino mejne izkušnje zaslutiti bralec sam. Kot 80-letnik je še vedno zelo dejaven. Naš gost je v Frekvenci X šele danes, saj je pretekli mesec preživel v Čilu, kjer je vodil šolo računalniškega programiranja gravitacijskih sil med vesoljskimi telesi, se udeležil znanstvene konference in se gotovo povzpel tudi na kakšen vrh v Andih.

POGOVOR

Dr. Sverre Aarseth, veliko ljudi se čudi, kako premetene so poti današnjih vesoljskih misij do oddaljenih kotičkov našega Osončja. Se to zdi zanimivo tudi vam? 

Da, seveda. Bil sem sopotnik vsega tega razvoja. Če na to gledam kot astronom, je to podobno, kot če bi gledali akvarij z zlatimi ribicami, ki bi plavale okoli, vendar ne bi vedele, kaj naj naredijo. Seveda ribe nimajo cilja, vendar bi rekel, da tudi nam ljudem ni jasno, kakšen je pomen vsega tega. Če nam bo kot človeštvu uspelo preživeti bližnjo prihodnost, bo postalo bolj jasno, kaj smo s tem dosegli. Gotovo pa se bomo tako sčasoma naučili, kako naj naselimo vesolje.

 Sestava našega Osončja se morda s časom spreminja. Kako daleč nazaj proti njegovemu nastanku lahko sežemo, če računalnike uporabimo kot časovni stroj? In kaj nam pove primerjava našega Osončja s planeti okoli drugih zvezd?

Najprej bi rad omenil, da s časovnim strojem ne morete v preteklost, saj nekaterim procesom časa ne morete obrniti. Táko je recimo trenje. Zato znanstveniki vedno računamo v prihodnost. Začnemo z razmerami, za katere na podlagi opazovanj sklepamo, da so veljale na začetku, nato pa ugotovimo, kako se bo tak sistem razvijal naprej. Primer takih začetnih razmer so diski snovi, ki jih vidimo okoli nekaterih mladih zvezd. Tudi za naše Osončje verjamemo, da so se planeti razvili iz takega diska v okolici našega Sonca. Tako nam opazovanja diskov okoli zvezd, ki so v različnih stopnjah razvoja, in drugih osončij, kjer danes poznamo že več kot tisoč planetov okoli drugih zvezd, pomagajo razumeti, kakšno je bilo Osončje nekdaj. Eden izmed ciljev je gotovo, da bi odkrili dvojnika našega Osončja, vendar to spremljajo težave, saj je majhne planete, kot je naša Zemlja, zelo težko opaziti.
Drugače je z velikimi planeti, kot je Jupiter. Takih planetov smo odkrili že veliko. Ugotovili smo, da so nekatera osončja precej različna od našega. To bogastvo različnih možnosti verjetno izvira iz kaotičnih majhnih motenj, ki uravnavajo razvoj planetnih sistemov. Tudi padci teles na Zemljo se dogajajo kaotično in jih je zato težko napovedati. Vseeno vemo, da je v preteklosti na Zemljo padlo veliko teles, pravzaprav je Zemlja nastala ob trku, ki ga sicer v podrobnostih še ne poznamo, imamo pa zanj smiselne razlage. To naše znanje izvira iz računov, ki spremljajo razvoj zelo veliko majhnih teles. Ti računi še niso končani, še vedno nam ni uspelo priti od začetka do današnje sestave Osončja, pa tudi danes se Osončje še vedno razvija. Te raziskave so zelo zanimive, hkrati pa zelo zapletene. Vendar se danes o marsičem glede razvoja našega Osončja že strinjamo.

Dr. Sverre Aarseth, vaše ime skoraj vsakemu astrofiziku na svetu vzbudi hvaležnost, saj ste razvili in z drugimi delili zelo učinkovite računalniške programe za preračunavanje interakcije med veliko telesi v vesolju. Govorimo tu o silah med milijoni zvezd, ki jih opazujejo današnje vesoljske misije, ali pa ima vaše delo še drugačno uporabnost?

Moje delo je skoraj v celoti posvečeno posledicam Newtonovega gravitacijskega zakona. Ta zakon deluje na vseh velikostih, pa naj bodo to naši umetni sateliti, lune planetov, planeti v osončjih, skupine tisočev zvezd, kot so na primer Gostosevci, ali pa tako imenovane kroglaste kopice v naši Galaksiji, od katerih ima vsaka do milijon zvezd. Na vseh teh različnih razdaljah je Newtonov zakon pomemben. Z njim lahko računamo vedenje različnih skupin teles in ugotovimo, kako se bodo razvijale. Pa tudi zvezde niso vselej enake, tudi te se razvijajo po fizikalnih zakonih. Fizikalni zakoni in računi nam na primer povedo, kakšna je temperatura v središču Sonca, ne da bi šli tja in jo izmerili. Podobno nam fizikalni računi omogočajo izračunati razmere ob nastajanju novih osončij. Zanimivo je, da tu govorimo o zelo različnih velikostih: od planetnih sistemov, kjer svetloba osrednje zvezde do najbolj oddaljenih teles takega sistema morda potuje pol dneva, pa do zvezdnih kopic, čez katere svetloba potuje tri, štiri ali pet let.

 Dr. Sveere Aarseth, slovite tudi po gorniških turah po vsem planetu, zadnja štiri desetletja svojih vzponov ste lani opisali v dobro sprejeti potopisni knjigi Prigode brezbrižnega ljubitelja. Kaj ste se o planetu Zemlja naučili med temi vzponi in pohodi?

Na našem planetu najdemo zelo različna podnebja in razmere. V gorah se lahko spopadate z zelo ekstremnimi razmerami. Znajdete se lahko na izjemnih višinah nad 6.000 metri, kjer ne raste nič več, in to lahko imenujete območje smrti. Vendar življenje uspeva tudi v teh zelo sovražnih okoljih. Torej na Zemlji kot planetu zelo različne razmere lahko spodbujajo življenje.

Astrofiziki pogosto razlagajo javnosti, da se nikakor ne bomo preselili na kakšen drug planet in je zato bolje, da popazimo na našo Zemljo. Katere ukrepe, ki jih po navadi prezremo, bi predlagali?

Veliko ljudi predlaga marsikaj, pravzaprav je predlaganega preveč. Pojavljajo se nestrinjanja, to pa seveda ni dobro. Zame je najpomembnejše ohranjanje narave. Zato potrebujemo izobraževanje, saj le potem lahko razumete, zakaj je treba ohraniti prav vse. Pravzaprav je to tekma s časom, ki jo po mojem zdaj izgubljamo. Seveda je marsikaj odvisno od tega, kaj se bo zgodilo v bližnji prihodnosti. Naš prvi pomembni cilj je, da sploh preživimo naslednjih sto let. Ne moremo biti prepričani, da nam bo to uspelo, saj odlično okolje planeta, ki smo ga podedovali, žal pospešeno uničujemo.


Frekvenca X

694 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Sverre Aarseth, mojster vesoljskega plesa

23.04.2015

Dr. Sverre Aarseth je legendarni astrofizik z Inštituta za astronomijo Univerze v Cambridgeu in skoraj vsakemu astrofiziku na svetu vzbudi hvaležnost, saj je razvil in z drugimi delil zelo učinkovite računalniške programe za preračunavanje interakcije med veliko telesi v vesolju. Lahko bi mu rekli kar mojster vesoljskega plesa.

Sverre Aarseth je legendarni astrofizik z Inštituta za astronomijo Univerze v Cambridgeu in ta znanstvenik je človeštvu dal vsaj dvoje: prvič, to je bila vse od leta 1961 naprej veriga računalniških programov, v katere je znal izjemno učinkovito vpletati zadnja dognanja z različnih področij in ki so omogočali računati gravitacijski privlak med veliko telesi ter tako ponazarjati strukturo in razvoj zelo različnih sistemov v vesolju: od leta 1961 še novih umetnih satelitov prek lun do skupin zvezd in eksotičnih okolij v bližini črnih lukenj.

In drugič, Sverre je bil eden prvih, ki je svoja orodja brez omejitev delil z drugimi ter jim pomagal pri njihovi uporabi in nadgradnji. Tako je pomagal vzpostaviti sistem v astronomiji zelo uveljavljenega skupnega svetovnega razvoja novega znanja, kjer ni tako pomembno, kdo je kaj naredil, ampak da smo se vsi skupaj naučili razumeti nekaj novega. Lahko bi mu rekli kar mojster vesoljskega plesa.

Prof. dr. Tomaž Zwitter,delo dr. Sverreja Aarsetha je v celoti posvečeno posledicam Newtonovega gravitacijskega zakona. Na začetku velja pojasniti, kaj še manjka gravitacijskemu zakonu, saj vemo, da ga je že v 17. stoletju opisal Isaac Newton. 

Gravitacijski zakon je za najpreprostejši, vendar še vedno zapleten primer, ko imamo le dve telesi, od časa Isaaca Newtona pa do 19. stoletja znanstvenikom uspelo temeljito raziskati. Poiskali so tudi enačbe, ki popisujejo njegove rešitve. Žal že sistema treh ali več teles ni mogoče tako rešiti. Nujna je uporaba računalnikov, ki sproti računajo rešitve in nam razkrivajo neverjetno bogastvo različnih možnosti.

 Zakaj pa bi radi izračunali, kako se vede združba veliko delcev v vesolju?

Telesa v vesolju so pogosto daleč vsaksebi, tako sodelujejo predvsem z medsebojnim gravitacijskim privlakom. Vzemiva naše Osončje, kjer na prvi pogled poznamo skoraj vse. Položaje večjih teles v Osončju poznamo na približno meter natančno, in to čeprav se razdalje med njimi merijo v stotinah milijonov kilometrov. Podobno izjemno natančno poznamo tudi hitrost njihovega gibanja. Vendar nas tudi v našem Osončju zanimajo časovne spremembe in njegov razvoj. Kakšnih 200 milijonov let naprej ali nazaj je danes z računalniškimi programi Sverreja Aarsetha mogoče priti, pri daljših časih pa se poznajo kaotični vplivi majhnih motenj med telesi. Kot drugo skrajnost lahko vzameva našo Galaksijo. Namesto osmih planetov in nekaj tisočev manjših teles kot v našem Osončju nas v naši Galaksiji zanima gibanje milijard zvezd. Spet so računalniški programi našega gosta tisti, ki bodo meritve današnjega položaja in gibanja milijarde zvezd, ki jih ravnokar opravlja vesoljska misija Gaja, lahko preslikali v sliko Galaksije pred milijardami let. Morda bomo spoznali celo, kakšna je bila naša Galaksija ob svojem nastanku.

 Vse to računalniško programiranje daje slutiti človeka, ki je sicer prijazen, vendar noč in dan ždi pred računalniškim zaslonom.

Dr. Sverre Aarseth bo julija dopolnil 81 let. Spoznala sva se pred 15 leti na konferenci v Bormiu. Tam smo mu nekega prostega popoldneva vsi precej zadihani sledili na enega izmed tritisočakov nad prelazom Stelvio. Ko 66-letnik prehiti kolege, ki bi jim lahko bil oče, to seveda pove, da Sverre ni kabinetni človek. Pri 40 letih je dotedanje razvedrilo igranja dopisnega šaha, v katerem je mednarodni mojster, zamenjal za solo gorniška potepanja po našem planetu. Podobno kot pri njegovih računalniških programih, ki so presegali hitrostne rekorde, ga je redkokdo lahko dohajal tudi v gorah. Svoja doživetja zadnjih štirih desetletij je lani opisal v knjigi Prigode brezbrižnega ljubitelja. Knjiga je izjemno branje, pri katerem se ne morem znebiti vtisa, da se – tako kot žilavi Vikingi – tudi Norvežan Sverre Aarseth ne zna hvaliti, ampak mora bližino mejne izkušnje zaslutiti bralec sam. Kot 80-letnik je še vedno zelo dejaven. Naš gost je v Frekvenci X šele danes, saj je pretekli mesec preživel v Čilu, kjer je vodil šolo računalniškega programiranja gravitacijskih sil med vesoljskimi telesi, se udeležil znanstvene konference in se gotovo povzpel tudi na kakšen vrh v Andih.

POGOVOR

Dr. Sverre Aarseth, veliko ljudi se čudi, kako premetene so poti današnjih vesoljskih misij do oddaljenih kotičkov našega Osončja. Se to zdi zanimivo tudi vam? 

Da, seveda. Bil sem sopotnik vsega tega razvoja. Če na to gledam kot astronom, je to podobno, kot če bi gledali akvarij z zlatimi ribicami, ki bi plavale okoli, vendar ne bi vedele, kaj naj naredijo. Seveda ribe nimajo cilja, vendar bi rekel, da tudi nam ljudem ni jasno, kakšen je pomen vsega tega. Če nam bo kot človeštvu uspelo preživeti bližnjo prihodnost, bo postalo bolj jasno, kaj smo s tem dosegli. Gotovo pa se bomo tako sčasoma naučili, kako naj naselimo vesolje.

 Sestava našega Osončja se morda s časom spreminja. Kako daleč nazaj proti njegovemu nastanku lahko sežemo, če računalnike uporabimo kot časovni stroj? In kaj nam pove primerjava našega Osončja s planeti okoli drugih zvezd?

Najprej bi rad omenil, da s časovnim strojem ne morete v preteklost, saj nekaterim procesom časa ne morete obrniti. Táko je recimo trenje. Zato znanstveniki vedno računamo v prihodnost. Začnemo z razmerami, za katere na podlagi opazovanj sklepamo, da so veljale na začetku, nato pa ugotovimo, kako se bo tak sistem razvijal naprej. Primer takih začetnih razmer so diski snovi, ki jih vidimo okoli nekaterih mladih zvezd. Tudi za naše Osončje verjamemo, da so se planeti razvili iz takega diska v okolici našega Sonca. Tako nam opazovanja diskov okoli zvezd, ki so v različnih stopnjah razvoja, in drugih osončij, kjer danes poznamo že več kot tisoč planetov okoli drugih zvezd, pomagajo razumeti, kakšno je bilo Osončje nekdaj. Eden izmed ciljev je gotovo, da bi odkrili dvojnika našega Osončja, vendar to spremljajo težave, saj je majhne planete, kot je naša Zemlja, zelo težko opaziti.
Drugače je z velikimi planeti, kot je Jupiter. Takih planetov smo odkrili že veliko. Ugotovili smo, da so nekatera osončja precej različna od našega. To bogastvo različnih možnosti verjetno izvira iz kaotičnih majhnih motenj, ki uravnavajo razvoj planetnih sistemov. Tudi padci teles na Zemljo se dogajajo kaotično in jih je zato težko napovedati. Vseeno vemo, da je v preteklosti na Zemljo padlo veliko teles, pravzaprav je Zemlja nastala ob trku, ki ga sicer v podrobnostih še ne poznamo, imamo pa zanj smiselne razlage. To naše znanje izvira iz računov, ki spremljajo razvoj zelo veliko majhnih teles. Ti računi še niso končani, še vedno nam ni uspelo priti od začetka do današnje sestave Osončja, pa tudi danes se Osončje še vedno razvija. Te raziskave so zelo zanimive, hkrati pa zelo zapletene. Vendar se danes o marsičem glede razvoja našega Osončja že strinjamo.

Dr. Sverre Aarseth, vaše ime skoraj vsakemu astrofiziku na svetu vzbudi hvaležnost, saj ste razvili in z drugimi delili zelo učinkovite računalniške programe za preračunavanje interakcije med veliko telesi v vesolju. Govorimo tu o silah med milijoni zvezd, ki jih opazujejo današnje vesoljske misije, ali pa ima vaše delo še drugačno uporabnost?

Moje delo je skoraj v celoti posvečeno posledicam Newtonovega gravitacijskega zakona. Ta zakon deluje na vseh velikostih, pa naj bodo to naši umetni sateliti, lune planetov, planeti v osončjih, skupine tisočev zvezd, kot so na primer Gostosevci, ali pa tako imenovane kroglaste kopice v naši Galaksiji, od katerih ima vsaka do milijon zvezd. Na vseh teh različnih razdaljah je Newtonov zakon pomemben. Z njim lahko računamo vedenje različnih skupin teles in ugotovimo, kako se bodo razvijale. Pa tudi zvezde niso vselej enake, tudi te se razvijajo po fizikalnih zakonih. Fizikalni zakoni in računi nam na primer povedo, kakšna je temperatura v središču Sonca, ne da bi šli tja in jo izmerili. Podobno nam fizikalni računi omogočajo izračunati razmere ob nastajanju novih osončij. Zanimivo je, da tu govorimo o zelo različnih velikostih: od planetnih sistemov, kjer svetloba osrednje zvezde do najbolj oddaljenih teles takega sistema morda potuje pol dneva, pa do zvezdnih kopic, čez katere svetloba potuje tri, štiri ali pet let.

 Dr. Sveere Aarseth, slovite tudi po gorniških turah po vsem planetu, zadnja štiri desetletja svojih vzponov ste lani opisali v dobro sprejeti potopisni knjigi Prigode brezbrižnega ljubitelja. Kaj ste se o planetu Zemlja naučili med temi vzponi in pohodi?

Na našem planetu najdemo zelo različna podnebja in razmere. V gorah se lahko spopadate z zelo ekstremnimi razmerami. Znajdete se lahko na izjemnih višinah nad 6.000 metri, kjer ne raste nič več, in to lahko imenujete območje smrti. Vendar življenje uspeva tudi v teh zelo sovražnih okoljih. Torej na Zemlji kot planetu zelo različne razmere lahko spodbujajo življenje.

Astrofiziki pogosto razlagajo javnosti, da se nikakor ne bomo preselili na kakšen drug planet in je zato bolje, da popazimo na našo Zemljo. Katere ukrepe, ki jih po navadi prezremo, bi predlagali?

Veliko ljudi predlaga marsikaj, pravzaprav je predlaganega preveč. Pojavljajo se nestrinjanja, to pa seveda ni dobro. Zame je najpomembnejše ohranjanje narave. Zato potrebujemo izobraževanje, saj le potem lahko razumete, zakaj je treba ohraniti prav vse. Pravzaprav je to tekma s časom, ki jo po mojem zdaj izgubljamo. Seveda je marsikaj odvisno od tega, kaj se bo zgodilo v bližnji prihodnosti. Naš prvi pomembni cilj je, da sploh preživimo naslednjih sto let. Ne moremo biti prepričani, da nam bo to uspelo, saj odlično okolje planeta, ki smo ga podedovali, žal pospešeno uničujemo.


06.05.2021

Materiali potujejo (II)

V drugem delu nove serije Frekvence X z novimi tehnologijami natisnemo kolenski vsadek, oblečemo pametni jopič, sestavimo najlažje kolo na svetu in naš planet obkrožimo s hitrostjo 27.000 kilometrov na uro.


29.04.2021

Virus danes, virus jutri

Kako razumeti virusno evolucijo, zakaj je pomembno spremljanje novih različic in kaj vse to pomeni za prihodnost pandemije?


22.04.2021

Materiali gradijo (I)

Rdeča nit nove serije oddaj Frekvence X so materiali. V prvem delu smo se ob pomoči strokovnjakov z Zavoda za gradbeništvo Slovenije lotili tistih, ki sestavljajo infrastrukturo človeških civilizacij.


15.04.2021

Slovenski izumrli sloni

Fosilni ostanki trobčarjev na slovenskih tleh-


08.04.2021

Napačen rez lahko odreže tudi sposobnost prepoznavanja (ženinega) obraza

Možgani so dih jemajoč organ, v katerega se zaljubiš in v katerega nikoli ne zarežeš brez strahospoštovanja. Odstranjevanje tumorja budnemu pacientu pa je eden najzahtevnejših postopkov v kirurgiji.


01.04.2021

Hrbtenica svetovnega internetnega omrežja leži na dnu oceanov

Kar 99 odstotkov vseh podatkov se prenaša po optičnih vlaknih, ki skoraj nezavarovana ležijo tudi nekaj tisoč metrov pod vodo.


25.03.2021

Na valovih odnosov: V digitalnem svetu nihče ni otok

Na kakšnih preizkušnjah so naši možgani in zakaj smo utrujeni od številnih virtualnih interakcij? Kakšna je vloga umetne inteligence in kje lahko nadgradi človeško?


17.03.2021

Na valovih odnosov: Ekstremne razmere

Kako in zakaj se odzivamo v ekstremnih razmerah? Kakšni mehanizmi se sprožajo v možganih? Kako je s stresom in kaj v odnose prinese adrenalin?


11.03.2021

Na valovih odnosov: Realnost pod maskami

Kako nošnja zaščitnih mask vpliva na odnose med ljudmi, kako so se spremenili naši mehanizmi spoznavanja in prepoznavanja? So se naši možgani privadili mask, se jih bodo tudi odvadili?


04.03.2021

Vznik življenja se ni zgodil samo enkrat, ampak večkrat na več krajih

Prof. Lewis Dartnell, avtor knjige Izvori, astrobiolog in komunikator znanosti o tem, kako je naš planet oblikoval človeško zgodovino.


25.02.2021

Skrivnosti prav posebnih zvezd, ki jim pravimo magnetarji

Nedavno je Nasini misiji Fermi LAT uspelo odkriti izbruh te nevtronske zvezde v bližnji galaksiji.


18.02.2021

Astrofotografija za telebane

Tokratno Frekvenco X bi lahko naslovili Fotografski vodnik po galaksiji ali pa kar Astrofotografija za telebane, prvi del. Skupaj se bomo učili o tem, kako potovati po vesolju kar z domačega balkona ali s strehe. Svoje iznajdljive in predvsem zelo cenovno dostopne astrofotografske rešitve bo z nami delil angleški astrofizik Rory Griffin.


11.02.2021

Zatiskanje oči pred izumiranjem

Kako se spopadati z zanikanjem izgube biotske raznovrstnosti*


04.02.2021

Kvantna prihodnost 3/3: Varne komunikacije in nevaren nadzor

Kvantne tehnologije prinašajo mnoge prednosti, a tudi nova etična vprašanja in potencialne nevarnosti. Zaradi njih bomo morali spremeniti številne družbene podsisteme.


28.01.2021

Kvantna prihodnost 2/3: Teleportacija? Tudi to je mogoče!

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


21.01.2021

Kvantna prihodnost 1/3: Prvi koraki do kvantne premoči

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


14.01.2021

V iskanju superprevodnikov, tehnološkega svetega grala

Kaj so superprevodniki, kaj z njimi zmoremo že danes in kaj si lahko z njihovo izpopolnitvijo obetamo? Kličemo tudi enega od avtorjev študije, ki so jo lani uvrstili med ključne znanstvene preboje leta?


07.01.2021

Skrivnosti pod ledom

Pod ledom se skrivajo skrivnosti, ki govorijo o človeški zgodovini in morda tudi prihodnjih pandemijah. A kako dolgo bodo še zaklenjene v led?


30.12.2020

Znanost v letu 2020: Od koronavirusa, vesolja do okoljskih alarmov

Znanost je v letu 2020 prišla izrazito v ospredje. Tja jo je potisnila pandemija, ki je zahtevala znanstvene odgovore in rešitve za ključni zdravstveni problem tega trenutka. Brez dvoma je koronavirus določal prioritete tudi v znanstvenem raziskovanju in hkrati sprožil nekaj velikih sprememb na tem področju. Pa vendar je bilo pestro tudi dogajanje na drugih znanstvenih področjih. V pregledu znanosti v letu 2020 nam bodo Maja Ratej (Val 202), Aljoša Masten (MMC) in Nina Slaček (Prvi in Ars) poleg osrednjih tem – koronavirusa, vesolja ter podnebno-ekološke krize – v pogovoru nanizali tudi prgišče drugih pomembnih prebojev z različnih znanstvenih področij.


30.12.2020

Fizik Jurij Bajc: Tako močnih potresov po svetu letno ni veliko

Po rušilnem potresu na Hrvaškem smo za nekaj pojasnil prosili fizika dr. Jurija Bajca s Pedagoške fakultete v Ljubljani, ki se ukvarja tudi s področjem potresov. Kot pravi, takšni rušilni potresi s tolikšno magnitudo letno na svetu niso pogosti, zgodi se jih le kakšnih sto, na našem območju pa je bila z njim v zadnjem stoletju primerljiva le peščica potresnih sunkov. Za kakšno sproščeno moč je šlo pri tokratnem tresenju tal južno od Zagreba, je tako številčno zaporedje potresov na Balkanu nekaj izrednega ali prej pričakovanega in kakšne potrese sploh imamo na Balkanu, posledica česa so, bo pojasnil na razumljiv in poljuden način. Foto: Bobo


Stran 9 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov