Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Fizika čarobnih kvarkov

18.06.2015

Tokrat smo se spustili v najnižje nadstropje narave, med njene osnovne gradnike. Gostili smo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožef Štefan v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Tsukubi raziskuje doslej neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki. Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je bil gost v Frekvenci X na Valu 202.

Spustili smo se v najnižje nadstropje narave, med njene osnovne gradnike. Gostimo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožefa Stefana v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Cukubi raziskuje do zdaj neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki.

Detektor Belle ob razgradnji

foto: Osebni arhiv

Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev, iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je gost  Frekvence X.

INTERVJU

Poganjanje tako zapletenih poskusov premika meje v fiziki, inženirstvu, računalništvu in celo menedžmentu. Gotovo to lahko ilustrirate s kakšnim zanimivim primerom?

Res je. V pospeševalnikih in detektorjih delcev se dandanes uporabljajo nove tehnologije, pogosto še nepreverjene, ki pa čez čas precej pogosto najdejo aplikativno vrednost na drugih področjih, denimo v medicini in drugje. Recimo za veliki hadronski trkalnik, ki deluje v Ženevi, so za superprevodne magnete uporabili zelo tanke žičke iz niobija in titana, vsaka od njih je tanjša od človeškega lasu. Če bi vse te žičke postavili drugo za drugo, bi jih bilo za šest razdalj do Sonca in nazaj. Enake oziroma podobne superprevodne magnete bodo uporabljali tudi v fuzijskem reaktorju ITER, za katerega človeštvo upa, da bo odgovoril na vprašanje preskrbe z energijo za naslednje stoletje in še dlje.

Mogoče nekoliko bolj zabavna zgodba: pred  časom, no, že kar pred nekaj leti, ko smo po poletnem remontu skušali zagnati trkalnik LEP – to je bil trkalnik, ki je deloval v istem podzemnem predoru, kot dandanes deluje veliki hadronski trkalnik – nam nikakor ni uspelo pospešiti žarkov do želenih energij. V trenutku, ko so se delci znašli v tem pospeševalniku, so na določenem delu izginili. Po nekaj dneh ugotavljanja, kaj bi lahko bilo narobe, ni bilo druge rešitve, kot da spet ustavimo pospeševalnik in pošljemo tehnike pogledat, kaj se dogaja. Ko so pospeševalnik odprli na mestu, kjer so se delci izgubljali, so našli prazno steklenico pijače, ki jo je eden od prejšnjih tehnikov pustil tam. To nam seveda potrjuje, da je vsa tehnologija še vedno odvisna od človeškega dela.

Naj dam kot primer: skupina znanstvenikov, ki je zbrana okoli detektorja Atlas na velikem hadronskem trkalniku, je sestavljena iz ljudi s prav vseh celin,  razen z Antarktike, kar dobesedno pomeni, da ta eksperiment nikoli ne spi, saj je v vsakem trenutku na Zemlji nekaj članov te skupine, torej imajo dan, da lahko pomagajo pri obratovanju tega pospeševalnika. Tehnologija oziroma načini za zagotavljanje delovanja teh zapletenih naprav so tako dejansko odvisni od zelo usklajenega dela tisočerih znanstvenikov v taki skupini.

V minulega pol stoletja ste fiziki odkrili vrsto osnovnih delcev, ki razložijo naravo treh  osnovnih sil v naravi. Tem delcem pripisujete zanimive lastnosti, kot so barva, čudnost, celo lepota, čar in okus. Se ti pojmi povezujejo s kakšnimi preprostimi pravili, ki nam povedo, kaj je v naravi dovoljeno in kaj ne?

Vsi ti pojmi, ki jih omenjate, označujejo različne lastnosti teh osnovnih delcev, za katere smo si izmislili res nekoliko čudna poimenovanja. Te lastnosti osnovnih delcev pa so povezane z načinom, kako med seboj interagirajo ali po domače povedano, kakšne sile med seboj občutijo. Te sile seveda vodijo v nekatere dovoljene ali nedovoljene primere v naravi, ki pa niso povsem preprosti. Naj dam primer: omenili ste barvo. Kvarki, ki sestavljajo recimo protone, ti so gradniki atomskih jeder, nosijo različne barve. Vendar kvarki, ki sestavljajo protone, morajo imeti vedno tako barvo, da če bi zmešali te barve, bi dobili belo barvo. Drugačni kvarki ne morejo sestavljati protona in drugih težjih delcev. Pri tem se je treba seveda zavedati, da je barva v tem primeru samo poimenovanje oziroma celo metafora za neko lastnost teh osnovnih delcev. V resnici seveda ti kvarki niso pobarvani z različnimi barvami. Čarobnost je tudi lastnost ene od vrst izmed šestih kvarkov, ki jih poznamo. Drugi imajo še druge čudne lastnosti, ki jih poimenujemo lepota in tako naprej.

Je torej poimenovanje le posledica trenutnega navdiha  ljudi, ki so odkrili določene lastnosti?

Že sama beseda kvarki izhaja iz knjige Jamesa Joyca in sama po sebi, kot je že Joyce nekoč rekel, ne pomeni nič. V tem smislu torej ne smemo razumeti dobesedno teh lastnosti, kot strokovno pravimo, kvantnih števil, da so določeni kvarki res čarobni, imajo pa določeno lastnost, ki ji rečemo čarobnost.

Profesor Golob, vrsto let že sodelujete v eksperimentu KEK na Japonskem. Kako lahko te raziskave pripomorejo k izpopolnitvi naše slike o osnovnih delcih in interakcijah v naravi?

Konkretno z eksperimentom, pri katerem sodelujem na Japonskem, merimo posebno lastnost, eno izmed osnovnih sil – imenujemo jo šibka sila –, ki je nekoliko drugačna od drugih sil v smislu, da če vse delce zamenjamo z antidelci, potem se izkaže, da lastnosti te sile niso več povsem enake. Po drugi strani je močna sila, elektromagnetna sila, ki jo poznamo tudi iz vsakdanjega življenja, simetrična na tako zamenjavo. Ta drobna asimetrija, če tako rečem, pa ima pri šibki interakciji gromozanske posledice. Posledica tega je namreč, da je naše celotno vesolje sestavljeno iz snovi, ne iz antisnovi, se pravi iz delcev in ne iz antidelcev. Torej so v razvoju vesolja zaradi te lastnosti te sile tako rekoč vsa antisnov oziroma antidelci v razvoju vesolja izginili, se anihirali, kot temu rečemo, ostali pa so samo delci. Če se nekoliko pošalim, je ta drobna lastnost te interakcije odgovorna za to, da smo ljudje, ne pa antiljudje. Po drugi strani je pa res, da ko opravimo podrobnejše izračune, ugotovimo, da je ta asimetrija, opazna na ravni subatomskih delcev, še vedno premajhna, da bi razložila tako rekoč popolno prevlado snovi nad antisnovjo v vesolju. Iz tega sklepamo, da morajo obstajati doslej neznani delci in procesi, ki to asimetrijo ojačajo. Seveda je naša želja, da bi te nove procese, nove delce odkrili.


Zadnje čase se veliko govori o odkritju še neznanega delca, iz katerega naj bi bila temna snov, ki je v vesolju v večini. Kaj poleg odkritja tega delca še manjka naši trenutni standardni sliki subatomskega sveta?

 Da, približno pet odstotkov vesolja, kot danes vemo, sestavlja snov, taka, kot jo poznamo, približno 25 % vesolja sestavlja tako imenovana temna snov, 70 % vesolja pa tako imenovana temna energija. Kaj pomeni pridevnik temna v izrazu temna snov? To pomeni, da ne interagira oziroma ne sodeluje z drugo snovjo s pomočjo šibke, elektromagnetne močne interakcije na enak način kot snov, ki nam je znana. Občuti pa gravitacijsko interakcijo in zato pravzaprav vemo, da temna snov obstaja. Seveda je temna snov pojem, ki ga skušamo razumeti, se pravi, da skušamo ugotoviti, iz česa je sestavljena. Pred časom smo upali, verjeli, da bi lahko bila sestavljena iz nevtrinov, to so delci, ki jih dandanes dokaj dobro poznamo, poznamo njihove lastnosti. No, izkazalo se je, da je gostota nevtrinov v vesolju premajhna, da bi ti sestavljali to temno snov. Potem pa pridemo počasi v škripce. Trenutna teorija osnovnih sil med delci, ki je eksperimentalno zelo dobro preverjena  in jo imenujemo standardni model, namreč ne vsebuje drugih delcev, ki bi glede na svoje lastnosti lahko bili kandidati za to, da sestavljajo temno snov. Seveda obstajajo druge teorije, na primer supersimetrične teorije, ki pa predvidevajo obstoj drugih delcev, ki za zdaj niso še eksperimentalno potrjeni in med njimi je kar nekaj kandidatov, ki bi lahko sestavljali temno snov. Načinov možnega odkritja takih delcev je več: ena možnost je recimo v velikem hadronskem trkalniku v evropskem laboratoriju za fiziko delcev v Ženevi, kjer bi pri zelo visokih energijah trkov med protoni tvorili tudi take delce, za katere verjamemo, da so relativno težki. Druga možnost je, da opazimo njihov vpliv na procese pri nižjih energijah, za kar pa je treba te procese izmeriti z do zdaj nepredstavljivo natančnostjo, da opazimo ta majhen učinek teh do zdaj neopaženih delcev. Ta pristop uporabljamo oziroma ga nameravamo uporabiti v eksperimentu na Japonskem.

Če smo prav prešteli, trenutno poznamo 61 osnovnih delcev. Se ne zdi nenavadno, da bi bilo osnovno nadstropje narave tako zapleteno? Je upati, da je kje nižje še bolj osnovna raven, na kateri bi bilo le nekaj še osnovnejših gradnikov?

 Število delcev, ki jih danes štejemo za osnovne – pa dam osnovne v narekovaje, recimo nedeljive – je manjše, rekel bi sedemnajst, če sem pravilno preštel. Seveda ima vsak od teh delcev lahko le različne lastnosti, a to še ni razlog, da bi ga potem šteli za drugačen osnovni delec. Imate pa povsem prav, standardni model kot teorija, ki jo danes sprejemamo kot opis osnovnih sil med delci, ima veliko pomanjkljivosti. Ena izmed teh bi lahko bila, da je število osnovnih delcev preveliko. Pa to ni tista največja pomanjkljivost, zaradi katere nas večina znanstvenikov meni, da standardni model ni končna teorija vsega, če tako rečem. Stari Grki so verjeli, da je svet sestavljen iz ognja, vode, zemlje in zraka. Več stoletij pozneje je Mendelejev postavil periodni sistem elementov in izkazalo se je, da tudi atomi v tem periodnem sistemu niso nedeljivi, niso osnovni delci. Danes vemo, da so atomska jedra sestavljena iz protonov in nevtronov, pa tudi protoni in nevtroni se naprej delijo oziroma so sestavljeni iz kvarkov. Z drugimi besedami, zavedati se moramo, da je naše razumevanje, kaj je osnovna sestava snovi, pogojeno z eksperimentalnimi možnostmi, ki so nam na voljo. Trenutno uporabljamo najmočnejše mikroskope, mikroskope v narekovajih, to so pospeševalniki delcev in pri do zdaj dosegljivih energijah nam omogočajo vpogled v sestavne dele snovi, ki so veliki recimo deset na minus petnajsto metra. Seveda ni nikjer zagotovila, da pri še bolj zmogljivih eksperimentalnih napravah ne bi nekoč ugotovili, da so tudi tisti delci, ki jih danes štejemo za nesestavljene,  v resnici strukturirani, da imajo sestavo. Dejstvo pa je, da dandanes vsi eksperimentalni dokazi, ki so na voljo, kažejo na to, da so ti delci, ki jih danes imenujemo osnovni delci, nesestavljeni. Sklepati o čemer koli drugem brez podlage eksperimentalnih dejstev je pa seveda stvar filozofije  oziroma subjektivnega pristopa k naravi.

Z novim detektorjem, ki bo začel zajemati podatke v prihodnjih letih, bo mogoče odkrivati stvari z desetkrat večjo natančnostjo, kot je bilo mogoče do zdaj. Bi lahko te raziskave spremenile naš pogled na svet?

Raziskave, ki jih opravljamo ne samo na ravni recimo eksperimentalne fizike osnovnih delcev ali katere druge fizike, lahko do neke mere močno spremenijo naš pogled na svet. Poglejmo  v zgodovino: razvoj kvantne mehanike je, najsi se tega zavedamo ali ne, močno spremenil človeški pogled na življenje in na svet okoli nas. Če nekoliko karikiram, možnosti obstajajo  oziroma obstajajo teorije, ki pravijo, da ne živimo v prostoru, ki je sestavljen iz treh prostorskih dimenzij in ene časovne, ampak da živimo v prostoru, ki ima veliko več dimenzij, pa jih ne opazimo. To si lahko predstavljamo tako, kot da bi bili mravlje na listu papirja. Mravlja se pomika gor in dol v dveh dimenzijah, pa se pravzaprav ne zaveda, da živi v prostoru, ki je sestavljen iz treh dimenzij. To bi bilo verjetno precej spremenjeno gledanje na svet, v katerem živimo, in drugačno razumevanje tega sveta.

 


Frekvenca X

694 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Fizika čarobnih kvarkov

18.06.2015

Tokrat smo se spustili v najnižje nadstropje narave, med njene osnovne gradnike. Gostili smo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožef Štefan v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Tsukubi raziskuje doslej neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki. Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je bil gost v Frekvenci X na Valu 202.

Spustili smo se v najnižje nadstropje narave, med njene osnovne gradnike. Gostimo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožefa Stefana v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Cukubi raziskuje do zdaj neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki.

Detektor Belle ob razgradnji

foto: Osebni arhiv

Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev, iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je gost  Frekvence X.

INTERVJU

Poganjanje tako zapletenih poskusov premika meje v fiziki, inženirstvu, računalništvu in celo menedžmentu. Gotovo to lahko ilustrirate s kakšnim zanimivim primerom?

Res je. V pospeševalnikih in detektorjih delcev se dandanes uporabljajo nove tehnologije, pogosto še nepreverjene, ki pa čez čas precej pogosto najdejo aplikativno vrednost na drugih področjih, denimo v medicini in drugje. Recimo za veliki hadronski trkalnik, ki deluje v Ženevi, so za superprevodne magnete uporabili zelo tanke žičke iz niobija in titana, vsaka od njih je tanjša od človeškega lasu. Če bi vse te žičke postavili drugo za drugo, bi jih bilo za šest razdalj do Sonca in nazaj. Enake oziroma podobne superprevodne magnete bodo uporabljali tudi v fuzijskem reaktorju ITER, za katerega človeštvo upa, da bo odgovoril na vprašanje preskrbe z energijo za naslednje stoletje in še dlje.

Mogoče nekoliko bolj zabavna zgodba: pred  časom, no, že kar pred nekaj leti, ko smo po poletnem remontu skušali zagnati trkalnik LEP – to je bil trkalnik, ki je deloval v istem podzemnem predoru, kot dandanes deluje veliki hadronski trkalnik – nam nikakor ni uspelo pospešiti žarkov do želenih energij. V trenutku, ko so se delci znašli v tem pospeševalniku, so na določenem delu izginili. Po nekaj dneh ugotavljanja, kaj bi lahko bilo narobe, ni bilo druge rešitve, kot da spet ustavimo pospeševalnik in pošljemo tehnike pogledat, kaj se dogaja. Ko so pospeševalnik odprli na mestu, kjer so se delci izgubljali, so našli prazno steklenico pijače, ki jo je eden od prejšnjih tehnikov pustil tam. To nam seveda potrjuje, da je vsa tehnologija še vedno odvisna od človeškega dela.

Naj dam kot primer: skupina znanstvenikov, ki je zbrana okoli detektorja Atlas na velikem hadronskem trkalniku, je sestavljena iz ljudi s prav vseh celin,  razen z Antarktike, kar dobesedno pomeni, da ta eksperiment nikoli ne spi, saj je v vsakem trenutku na Zemlji nekaj članov te skupine, torej imajo dan, da lahko pomagajo pri obratovanju tega pospeševalnika. Tehnologija oziroma načini za zagotavljanje delovanja teh zapletenih naprav so tako dejansko odvisni od zelo usklajenega dela tisočerih znanstvenikov v taki skupini.

V minulega pol stoletja ste fiziki odkrili vrsto osnovnih delcev, ki razložijo naravo treh  osnovnih sil v naravi. Tem delcem pripisujete zanimive lastnosti, kot so barva, čudnost, celo lepota, čar in okus. Se ti pojmi povezujejo s kakšnimi preprostimi pravili, ki nam povedo, kaj je v naravi dovoljeno in kaj ne?

Vsi ti pojmi, ki jih omenjate, označujejo različne lastnosti teh osnovnih delcev, za katere smo si izmislili res nekoliko čudna poimenovanja. Te lastnosti osnovnih delcev pa so povezane z načinom, kako med seboj interagirajo ali po domače povedano, kakšne sile med seboj občutijo. Te sile seveda vodijo v nekatere dovoljene ali nedovoljene primere v naravi, ki pa niso povsem preprosti. Naj dam primer: omenili ste barvo. Kvarki, ki sestavljajo recimo protone, ti so gradniki atomskih jeder, nosijo različne barve. Vendar kvarki, ki sestavljajo protone, morajo imeti vedno tako barvo, da če bi zmešali te barve, bi dobili belo barvo. Drugačni kvarki ne morejo sestavljati protona in drugih težjih delcev. Pri tem se je treba seveda zavedati, da je barva v tem primeru samo poimenovanje oziroma celo metafora za neko lastnost teh osnovnih delcev. V resnici seveda ti kvarki niso pobarvani z različnimi barvami. Čarobnost je tudi lastnost ene od vrst izmed šestih kvarkov, ki jih poznamo. Drugi imajo še druge čudne lastnosti, ki jih poimenujemo lepota in tako naprej.

Je torej poimenovanje le posledica trenutnega navdiha  ljudi, ki so odkrili določene lastnosti?

Že sama beseda kvarki izhaja iz knjige Jamesa Joyca in sama po sebi, kot je že Joyce nekoč rekel, ne pomeni nič. V tem smislu torej ne smemo razumeti dobesedno teh lastnosti, kot strokovno pravimo, kvantnih števil, da so določeni kvarki res čarobni, imajo pa določeno lastnost, ki ji rečemo čarobnost.

Profesor Golob, vrsto let že sodelujete v eksperimentu KEK na Japonskem. Kako lahko te raziskave pripomorejo k izpopolnitvi naše slike o osnovnih delcih in interakcijah v naravi?

Konkretno z eksperimentom, pri katerem sodelujem na Japonskem, merimo posebno lastnost, eno izmed osnovnih sil – imenujemo jo šibka sila –, ki je nekoliko drugačna od drugih sil v smislu, da če vse delce zamenjamo z antidelci, potem se izkaže, da lastnosti te sile niso več povsem enake. Po drugi strani je močna sila, elektromagnetna sila, ki jo poznamo tudi iz vsakdanjega življenja, simetrična na tako zamenjavo. Ta drobna asimetrija, če tako rečem, pa ima pri šibki interakciji gromozanske posledice. Posledica tega je namreč, da je naše celotno vesolje sestavljeno iz snovi, ne iz antisnovi, se pravi iz delcev in ne iz antidelcev. Torej so v razvoju vesolja zaradi te lastnosti te sile tako rekoč vsa antisnov oziroma antidelci v razvoju vesolja izginili, se anihirali, kot temu rečemo, ostali pa so samo delci. Če se nekoliko pošalim, je ta drobna lastnost te interakcije odgovorna za to, da smo ljudje, ne pa antiljudje. Po drugi strani je pa res, da ko opravimo podrobnejše izračune, ugotovimo, da je ta asimetrija, opazna na ravni subatomskih delcev, še vedno premajhna, da bi razložila tako rekoč popolno prevlado snovi nad antisnovjo v vesolju. Iz tega sklepamo, da morajo obstajati doslej neznani delci in procesi, ki to asimetrijo ojačajo. Seveda je naša želja, da bi te nove procese, nove delce odkrili.


Zadnje čase se veliko govori o odkritju še neznanega delca, iz katerega naj bi bila temna snov, ki je v vesolju v večini. Kaj poleg odkritja tega delca še manjka naši trenutni standardni sliki subatomskega sveta?

 Da, približno pet odstotkov vesolja, kot danes vemo, sestavlja snov, taka, kot jo poznamo, približno 25 % vesolja sestavlja tako imenovana temna snov, 70 % vesolja pa tako imenovana temna energija. Kaj pomeni pridevnik temna v izrazu temna snov? To pomeni, da ne interagira oziroma ne sodeluje z drugo snovjo s pomočjo šibke, elektromagnetne močne interakcije na enak način kot snov, ki nam je znana. Občuti pa gravitacijsko interakcijo in zato pravzaprav vemo, da temna snov obstaja. Seveda je temna snov pojem, ki ga skušamo razumeti, se pravi, da skušamo ugotoviti, iz česa je sestavljena. Pred časom smo upali, verjeli, da bi lahko bila sestavljena iz nevtrinov, to so delci, ki jih dandanes dokaj dobro poznamo, poznamo njihove lastnosti. No, izkazalo se je, da je gostota nevtrinov v vesolju premajhna, da bi ti sestavljali to temno snov. Potem pa pridemo počasi v škripce. Trenutna teorija osnovnih sil med delci, ki je eksperimentalno zelo dobro preverjena  in jo imenujemo standardni model, namreč ne vsebuje drugih delcev, ki bi glede na svoje lastnosti lahko bili kandidati za to, da sestavljajo temno snov. Seveda obstajajo druge teorije, na primer supersimetrične teorije, ki pa predvidevajo obstoj drugih delcev, ki za zdaj niso še eksperimentalno potrjeni in med njimi je kar nekaj kandidatov, ki bi lahko sestavljali temno snov. Načinov možnega odkritja takih delcev je več: ena možnost je recimo v velikem hadronskem trkalniku v evropskem laboratoriju za fiziko delcev v Ženevi, kjer bi pri zelo visokih energijah trkov med protoni tvorili tudi take delce, za katere verjamemo, da so relativno težki. Druga možnost je, da opazimo njihov vpliv na procese pri nižjih energijah, za kar pa je treba te procese izmeriti z do zdaj nepredstavljivo natančnostjo, da opazimo ta majhen učinek teh do zdaj neopaženih delcev. Ta pristop uporabljamo oziroma ga nameravamo uporabiti v eksperimentu na Japonskem.

Če smo prav prešteli, trenutno poznamo 61 osnovnih delcev. Se ne zdi nenavadno, da bi bilo osnovno nadstropje narave tako zapleteno? Je upati, da je kje nižje še bolj osnovna raven, na kateri bi bilo le nekaj še osnovnejših gradnikov?

 Število delcev, ki jih danes štejemo za osnovne – pa dam osnovne v narekovaje, recimo nedeljive – je manjše, rekel bi sedemnajst, če sem pravilno preštel. Seveda ima vsak od teh delcev lahko le različne lastnosti, a to še ni razlog, da bi ga potem šteli za drugačen osnovni delec. Imate pa povsem prav, standardni model kot teorija, ki jo danes sprejemamo kot opis osnovnih sil med delci, ima veliko pomanjkljivosti. Ena izmed teh bi lahko bila, da je število osnovnih delcev preveliko. Pa to ni tista največja pomanjkljivost, zaradi katere nas večina znanstvenikov meni, da standardni model ni končna teorija vsega, če tako rečem. Stari Grki so verjeli, da je svet sestavljen iz ognja, vode, zemlje in zraka. Več stoletij pozneje je Mendelejev postavil periodni sistem elementov in izkazalo se je, da tudi atomi v tem periodnem sistemu niso nedeljivi, niso osnovni delci. Danes vemo, da so atomska jedra sestavljena iz protonov in nevtronov, pa tudi protoni in nevtroni se naprej delijo oziroma so sestavljeni iz kvarkov. Z drugimi besedami, zavedati se moramo, da je naše razumevanje, kaj je osnovna sestava snovi, pogojeno z eksperimentalnimi možnostmi, ki so nam na voljo. Trenutno uporabljamo najmočnejše mikroskope, mikroskope v narekovajih, to so pospeševalniki delcev in pri do zdaj dosegljivih energijah nam omogočajo vpogled v sestavne dele snovi, ki so veliki recimo deset na minus petnajsto metra. Seveda ni nikjer zagotovila, da pri še bolj zmogljivih eksperimentalnih napravah ne bi nekoč ugotovili, da so tudi tisti delci, ki jih danes štejemo za nesestavljene,  v resnici strukturirani, da imajo sestavo. Dejstvo pa je, da dandanes vsi eksperimentalni dokazi, ki so na voljo, kažejo na to, da so ti delci, ki jih danes imenujemo osnovni delci, nesestavljeni. Sklepati o čemer koli drugem brez podlage eksperimentalnih dejstev je pa seveda stvar filozofije  oziroma subjektivnega pristopa k naravi.

Z novim detektorjem, ki bo začel zajemati podatke v prihodnjih letih, bo mogoče odkrivati stvari z desetkrat večjo natančnostjo, kot je bilo mogoče do zdaj. Bi lahko te raziskave spremenile naš pogled na svet?

Raziskave, ki jih opravljamo ne samo na ravni recimo eksperimentalne fizike osnovnih delcev ali katere druge fizike, lahko do neke mere močno spremenijo naš pogled na svet. Poglejmo  v zgodovino: razvoj kvantne mehanike je, najsi se tega zavedamo ali ne, močno spremenil človeški pogled na življenje in na svet okoli nas. Če nekoliko karikiram, možnosti obstajajo  oziroma obstajajo teorije, ki pravijo, da ne živimo v prostoru, ki je sestavljen iz treh prostorskih dimenzij in ene časovne, ampak da živimo v prostoru, ki ima veliko več dimenzij, pa jih ne opazimo. To si lahko predstavljamo tako, kot da bi bili mravlje na listu papirja. Mravlja se pomika gor in dol v dveh dimenzijah, pa se pravzaprav ne zaveda, da živi v prostoru, ki je sestavljen iz treh dimenzij. To bi bilo verjetno precej spremenjeno gledanje na svet, v katerem živimo, in drugačno razumevanje tega sveta.

 


01.02.2018

Jabolko na mizi in slovenski kvazikristal

Zaradi fizikalnih vplivov lahko dobijo preproste plasti celic ali tkiva zelo nenavadne oblike. Če pustimo jabolko nekaj dni na mizi, opazimo, da postaja vse manjše, saj pride do neskladja med prostornino mesa in površino lupine. Ta se naguba. Naš gost prof. dr. Primož Ziherl celične strukture pojasnjuje s poenostavljenimi fizikalnimi modeli in povedno ugotavlja, da je resnica odvisna od tega, s kako natančnim povečevalnim steklom jo želimo videti. Prof. Ziherl je skupaj z japonskim kolegom predlagal tudi fizikalni obstoj novega dvorazsežnega kvazikristala, kar je eden najodmevnejših raziskovalnih dosežkov Univerze v Ljubljani v letu 2017.


25.01.2018

Skrivnost hobotnic in naših možganov

Hobotnica ima osupljive sposobnosti spreminjanja svoje oblike in barvnih vzorcev. Človeštvo fascinira že tisoče let. V sodobnosti simbolizira temno energijo, ki s svojimi lovkami obvladuje politiko in gospodarstvo. V zadnjih letih nevroznanstveniki, evolucijski biologi, tehnologi in znanstveniki s področja robotike poglobljeno raziskujejo to skrivnostno, mistično bitje. Projekt Octopus Brainstorming, ki so ga predstavili v Trbovljah, je plod sodelovanja dveh principov, umetnosti in znanosti. Avtorji ga razvijajo že pet let. Niz EEG senzorjev, vgrajenih v telo hobotnice, osvetljeno z barvnimi lučmi, človeka popelje v hobotničin magični in duhovni svet. Obredno pokrivalo v obliki hobotnice na ta način simbolizira utelešeno inteligentnost. Nevroznanstvenik dr. Marc Cohen in umetnica Victoria Vesna raziskujeta komunikacijo med ljudmi na osnovi analize njihovih možganskih valov. Kaj se lahko naučimo iz ugotovitev in katere bolezni bi lahko zdravili?


18.01.2018

Radioaktivni odpadki

Za radioaktivne odpadke je treba skrbeti še dolgo po tem, ko jih odložimo. Nekateri materiali namreč lahko ostanejo radioaktivni tudi po več deset tisoč let. V Sloveniji jih velika večina nastaja v Nuklearni elektrarni Krško, ne pa vsi – prihajajo tudi iz bolnišnic, raziskovalnih središč in industrije, najdemo pa jih celo v povsem vsakdanjih predmetih, ki na prvi pogled nikakor ne delujejo radioaktivno. Kako torej skrbimo zanje?


11.01.2018

Roboti kot profesorji in ljubimke

Japonski pionir humanoidne robotike Hiroši Išiguro je pred leti v Trbovlje pripeljal svojega robotskega dvojnika, ki je popolna kopija stvaritelja. Najnovejša različica robotskega profesorja ima vrhunsko izpopolnjen obraz, mimika, kretnje in govor v popolnosti spominjajo na človeka, tako da robotski profesor prepričljivo predava študentom. Pri (človeškem) prof. Ishiguru bo kmalu doktorirala Slovenka Maša Jazbec. Na Japonskem na leto prodajo 2 tisoč tehnološko vrhunsko izpopolnjenih seks robotov, ki osamljenim moškim čustveno in seksualno nadomeščajo partnerke. Konec decembra je v Londonu potekala mednarodna konferenca o seksu in ljubezni z roboti, na kateri je britanski raziskovalec umetne inteligence David Levy napovedal, da bodo nekoč lahko imeli ljudje z roboti celo otroke. Na konferenci je bila tudi slovenska antropologinja Nika Mahnič, sicer aktivistka kampanje proti seks robotom. Kje so meje in robovi sodobne humanoidne robotike?


04.01.2018

Skrivnostno življenje skrivnosti

V antiutopičnem delu 1984 je George Orwell dejal, da če želiš ohraniti skrivnost, jo moraš najprej skriti pred samim seboj. Z znanstveniki poskušamo ugotoviti, kako uspešni smo pri tem, katere so tiste skrivnosti, ki jih ljudje največkrat prikrivamo, zakaj nam to prikrivanje slabša kakovost življenja in ali je razkritje edina prava pot do odrešitve. Naši gosti bodo: profesor menedžmenta Michael Slepian z Univerze Columbia v New Yorku, nevropsiholog Jonathan Schooler z Univerze Santa Barbara, psihoterapevtka Katja Istenič in pravnik Dino Bauk.


28.12.2017

Znanstveni presežki 2017

Leto 2017 je ubiralo svojstveno pot tudi v znanosti. Od prelomnih odkritij v vesolju, vznemirljivih prebojev v medicini in genetiki, krute realnosti v okoljski znanosti, do slovenskih prebojev v biologiji, fiziki in kemiji … Navkljub slabi finančni podpori države so naši raziskovalci vedno bolj uspešni, tudi pri pridobivanju evropskih sredstev. Ekipa Frekvence X je izbrala nekatere odmevne tuje in domače znanstvene dosežke. Od klasične do digitalne tablete, od čiščenja vode s kavitacijo do bolj učinkovitih škropiv, od kompleksnosti do poljudnosti. Pripovedujeta Maja Ratej in Luka Hvalc.


14.12.2017

Smemo življenje tehtati z drugim življenjem?

Kaj bi storili, če bi se znašli v brezizhodnem položaju odločiti se nekoga rešiti, pri tem pa žrtvovati nekoga drugega. Smete izvesti matematični izračun in žrtvovati enega človeka, da bi jih rešili sto? Moralna dilema, pred katero se najverjetneje nikoli ne bomo znašli, daje dober vpogled v razmišljanje ljudi in kako bi reagirali v kritičnih trenutkih. Smo torej pripravljeni odigrati vlogo v igri in nekoga žrtvovati? Kdaj pa se od odločanja distanciramo in dilemo opredelimo kot moralno sporno, kdaj se odločamo racionalno in kdaj čustveno ter kakšne dileme obstajajo tudi v vsakdanjem življenju, za katere se sploh ne zavedamo, da o njih moralno odločamo? O moralnih dilemah smo razpravljali s filozofom Mirtom Komelom s Fakultete za družbene vede in nevroznanstvenikom Fieryjem Cushmanom z Univerze Harvard.


07.12.2017

Slovenski znanstveniki bi vodo čistili s kavitacijo

Prestižni Evropski raziskovalni svet, podeljevalec najuglednejših evropskih raziskovalnih projektov, je nekaj manj kot 2 milijona evrov namenil slovenskim raziskovalcem. Na tako imenovani Consolidator ravni je bila uspešna ekipa prof. dr. Matevža Dularja z ljubljanske Strojne fakultete, njihov projekt CABUM se ukvarja kavitacijo, to je z nastajanjem mehurčkov plina v tekočinah.Gre za fundamentalne raziskave, ki so pomembne tako za delovanje raketnega motorja kot za ropot domačega sokovnika. Izjemno pomembna pa je uporaba za čiščenje voda, v katerih s kavitacijo lahko uničimo viruse in bakterije in to brez uporabe kemije. In prav na področju čiščenja vode, bodo slovenski znanstveniki nadaljevali raziskave, ki obetajo velik preboj. Osrednji gost podkasta dr. Matevž Dular je eden izmed najmlajših rednih profesorjev ljubljanske univerze, a je še vedno zaposlen le za določen čas. Večino doktorata je opravil v Nemčiji, sodeluje s številnimi uglednimi tujimi inštituti, projektno tudi z Evropsko vesoljsko agencijo. Ob koncu z našim rednim sodelavcem prof. Tomažem Zwittrom govorimo tudi o zmagovalcu mednarodne olimpijade iz astronomije in astrofizike Alekseju Jurci in izpostavljamo decembrske astronomske zanimivosti.


30.11.2017

Zemljevidi ustvarijo in popačijo našo podobo sveta

Svet ni tak, kot si ga predstavljamo z zemljevidov. In to iz enega samega razloga – ker je okroglo Zemljo nemogoče preslikati na raven list papirja, brez da bi jo vsaj delno popačili. Grenlandija zato na klasičnem zemljevidu sveta izgleda večja od Evrope, čeprav je v resnici skoraj petkrat manjša. Tudi orientacija karte je stvar družbenega dogovora – evropske srednjeveške karte so bile denimo obrnjene proti vzhodu. V Frekvenci X o kartografiji, tisti klasični, ki preko različnih vrst projekcij skuša svet spraviti v eno ravnino, in modernih tehnologijah, ki te pristope povsem spreminjajo. Gosti: dr. Dušan Petrovič, predstojnik Katedre za kartografijo na Fakulteti za gradbeništvo in geodezijo mag. Roman Rener, Geodetski inštitut Slovenije Boštjan Burger, geograf in informatik


23.11.2017

Veliko podatkov za velikega brata

Nikoli v zgodovini nismo imeli toliko zabeleženih podatkov o svetu in družbi. Vedno učinkovitejše metode odbiranja in združevanja določenih delov ogromnih podatkovnih baz v uporabne informacijske pakete bodo v prihodnosti najverjetneje sestavljali enega najmočnejših orodij za tiste, ki ga bodo lahko uporabljali.Podjetjem računalniško upravljanje z bazami podatkov že pomaga učinkoviteje oglaševati in tako bolje poslovati na trgu, državam pomaga voditi evidence o svojih prebivalcih in tako bolje prepoznavati ter razreševati ali preprečevati probleme, s katerimi se srečujejo, delodajalcem lajša odločitev o zaposlitvi določenega kandidata, sodobne metode upravljanja s podatki lahko pomenijo tudi pomemben napredek v medicini, natančneje v diagnostiki … in tako naprej. Potencial za družbi koristno uporabo novega znanja na področju dela z bazami podatkov je – kot baze same – ogromen. Žal pa lahko to močno orodje v nepravih rokah v prihodnje pomeni tudi zdrs v distopično družbo; situacijo, v kateri se ne bomo mogli nikakor skriti pred velikim bratom, ki nam bo sledil na vsakem koraku, beležil podatke o nas in nas po svojih kriterijih vrednotil.Kitajska ni daleč od tega orwellovskega scenarija: že čez tri leta naj bi po načrtih tamkajšnjih oblasti zaživel tako imenovani Sistem socialnega kapitala, prek katerega bo kitajski veliki brat razpolagal z obširnimi paketi podatkov o svojih državljanih ter jih za zaželene oziroma nezaželene vedenjske vzorce nagrajeval oz. kaznoval. Katere etične dileme moramo razrešiti, če se prednostim sodobnih znanstvenih dognanj s področja družboslovne informatike ne želimo odpovedati, obenem pa preprečiti, da bi se “kitajska prihodnost” zgodila tudi nam? Gostje: Dr. Luka Kronegger, katedra za družboslovno informatiko in metodologijo FDV; Jean-Philippe Schepens, podatkovni znanstvenik in ekonomist; Dr. Michal Kosinski, univerza Stanford, doktorat iz všečkov.


16.11.2017

Od avtomobila Yugo do zdravljenja diabetesa

Nevtronsko sipanje je nova metoda, s katero se ukvarjajo tudi slovenski znanstveniki, z njeno pomočjo si lahko med drugim obetamo še večji napredek kvantnega računalništva, razvoj alternativnih virov energije in nova dognanja v medicini in farmaciji. Kako bodo sodobni pristopi v raziskavah magnetizma in materialov spremenili industrijo in naše življenje, na katerih področjih lahko nevtroni prispevajo ključne korake in kakšna je pri tem vloga slovenskih znanstvenikov? Podkast smo posneli v študentski Kavarni Mafija na Fakulteti za matematiko in fiziko v Ljubljani. Gosta sta bila dr. Franci Merzel s Kemijskega inštituta in dr. Matej Pregelj z Inštituta Jožefa Štefana, v Grenoble smo poklicali dr. Marka Johnsona.


09.11.2017

Recept za uspešnico

Kako napisati hit, je vprašanje, na katerega ni univerzalnega odgovora. Med ljudmi je praviloma popularno tisto, kar lahko hitro in brez napora prepoznajo. Učinek prepoznanja je pomemben, saj posameznika navda z zadovoljstvom, vendar zgolj ponavljanje že znanega ni najboljša formula za popularnost. Recept za uspešnico je praviloma ravno pravšnja mešanica že poznanega in novega, a zgolj vrhunska ideja ni dovolj, kot ključna dodana vrednost se večkrat izkaže tudi nadpovprečno obrtniško znanje, vrhunsko obvladanje forme. V čem je skrivnost uspešnih glasbenikov, režiserjev, pa tudi politikov in predstavnikov še kakšne profesije, ki se ne ukvarja izključno s tehničnimi ali naravoslovnimi področji? Gostje: Derek Thompson (avtor knjižne uspešnice Hit Makers: The Science of Popularity), Stojan Pelko (filmski publicist in komunikacijski strateg), Magnifico (glasbenik in avtor številnih hitov), dr. Sašo Dolenc (fizik in filozof)  


02.11.2017

Vsi zvoki našega mesta

Metanje steklenic v zabojnike, harmonika od zore do mraka, brnenje kosilnic in puhalnikov za listje … To je le nekaj zvokov, ki zaznamuje našo bolj ali manj urbano zvočno krajino. Projekt Zvočna ekologija mest podrobno analizira zvoke v mestnih središčih in četrtih in se dotika vprašanja, kako se zvočnost določenih delov mesta spreminja zaradi družbeno-političnih procesov in ekonomskih interesov. Na spremembe v urbani zvočni krajini vplivajo tudi globalizacija, turizem in zabava. Ljudje s soustvarjanjem zvočne krajine vstopajo tudi v javni politični prostor. Kaj pa zvoki mesta povedo o nas? Kateri zvoki nas v javnem prostoru najbolj motijo in zakaj? Kakšne so naše osebne zvočne krajine? Razpravljamo z gostjama z ZRC SAZU, dr. Mojco Kovačič z Glasbenonarodopisnega inštituta in dr. Ano Hofman z Inštituta za kulturne in spominske študije.


26.10.2017

Orkani - uničujoči velikani

“Ko letimo proti očesu orkana, je to najbolj nemirno območje. Takrat pihajo najmočnejši vetrovi, ki letalo sukajo levo in desno. Ko pa se enkrat prebijemo skozi orkan, nas čaka izjemen prizor - sončno vreme, okrog pa čudovite strukture oblakov, kot bi jih nekdo naslikal,” tako svojo pot skozi orkane opisuje meteorolog in lovec na orkane Ryan Rickert s 53. izvidniške meteorološke eskadrilje. Da so orkani nekaj izjemnega (in hkrati grozljivega), se lahko prepričamo vsako poletje, ko silovito udarijo predvsem v državah v Karibskem morju. Letošnja orkanska sezona se zdaj približuje koncu, kaj pa nam je pustila? Veliko opustošenja, pa tudi vprašanj - ali je pojav vedno močnejših orkanov posledica našega vpliva na podnebje ali so vedno obstajali tako uničujoči orkani. Poleg tega pa se bomo z lovcem na orkane odpravili vse do očesa tropskega ciklona. Pripnite si varnostne pasove in poletite z nami.


19.10.2017

Proteinski origami in nevtronske zvezde s slovenskim pridihom

Na Kemijskem inštitutu v Ljubljani so razvili nov tip proteinskih struktur, ki se lahko brez škodljivih učinkov sintetizirajo v celicah ter se same od sebe sestavijo v nanometrske kletke. Te imajo velik potencial za dostavo zdravil v medicini, tvorbo sodobnih cepiv, snovanje funkcionalnih materialov … Skrivnost proteinskih origamijev pojasjujeta dr. Ajasja Ljubetič in Fabio Lapenta, avtorja raziskave, objavljene v reviji Nature Biotechnology. Astronomi Evropskega južnega observatorija pa so pomočjo mreže teleskopov v Čilu prvič zaznali vir gravitacijskih valov, ki naj bi jih povzročilo trčenje in zlitje dveh nevtronskih zvezd. Pri tem je to trčenje v vesolje izvrglo številne težke elemente, kot sta zlato in platina. Odkritje, pri katerem so sodelovali tudi slovenski astrofiziki, predstavlja najmočnejši dokaz doslej, da so kratkotrajni izbruhi žarkov gama posledica trkov nevtronskih zvezd. Kaj pomeni prelomno odkritje razložita dr. Andreja Gomboc z Univerze v Novi Gorici in dr. Nial Tanvir z Univerze Leicester v Veliki Britaniji.


12.10.2017

Sončevi vplivi in nogomet

Skupina satelitov Cluster preučuje magnetosfero v okolici Zemlje. Ta nas ščiti pred delci Sončevega vetra, ki bi sicer precej neugodno vplivali na življenje na Zemlji. Gre za par satelitov, ki sta bila izstreljena leta 2000 in bosta delovala vsaj do leta 2018. Kako je mogoče obnašanje Sonca primerjati celo z nogometom in kaj smo se naučili od pristanka sonde Rosetta na kometu Čurjumov - Gerasimenko, sta nam pojasnila vrhunska znanstvenika Evropske vesoljske agencije, francoski raziskovalec Philippe Escoubet in britanski astrofizik Matt Taylor, ki sta pred tedni gostovala na Bledu. Z našim strokovnim sodelavcem prof. Tomažem Zwittrom tudi o jesenskih aktualnostih iz sveta astronomije.


05.10.2017

Nobelove nagrade 2017

Cirkadiani ritmi, gravitacijski valovi in krioelektronska mikroskopija vam verjetno ne povedo veliko, če pa dodamo, da so to teme, ki so si letos prislužile Nobelovo nagrado, veste vsaj, da gre za prelomne raziskave v znanosti. Na področju medicine in fiziologije so Nobelovo nagrado dobili Jeffrey C. Hall, Michael Rosbash and Michael W. Young, na področju fizike je polovico nagrade dobil Rainer Weiss, po četrtino pa Barry C. Barish in Kip S. Thorne, na področju kemije pa Jacques Dubochet, Joachim Frank in Richard Henderson. Kako pomembna so odkritja teh znanstvenikov razlagamo ob pomoči slovenskih strokovnjakov.


24.09.2017

Lubadar je ekonomski, ne biološki problem

Pravljice o Rdeči kapici in volku nam že v otroštvu v kosti poženejo vsaj malo strahu pred gozdovi, a dr. Andraž Čarni, ki veliko časa preživi med drevesi, pravi, da je strah največkrat brez osnove. Medvedi resda tu in tam prilomastijo, a realno je še vedno majhna možnost, da naletimo nanje, divje živali se načeloma tudi rade skrijejo pred človekom. Je pa zato v gozdovih veliko drugih zanimivosti. Dr. Čarni je biolog na Inštitutu Jovana Hadžija ZRC SAZU in eden izmed ključnih ljudi za vpis naših pragozdov Krokar in Snežnik Žrdolce na Unescov seznam svetovne naravne dediščine. Je odličen poznavalec balkanskih gozdov, pred kratkim je postal član makedonske akademije znanosti in umetnosti. Pogovarjamo se tudi o lubadarju, ki je predvsem posledica šibkih zim in napada pospeševano posajene smreke v nižinskih gozdovih. Z dr. Čarnijem se je pogovarjal Luka Hvalc.


21.09.2017

Vozovnica za Mars bi bila enosmerna

Vesoljsko vreme je eno izmed raziskovalnih polj dr. Primoža Kajdiča iz Murske Sobote, ki že 14 let živi in dela v Mehiki, kjer je astronomija zanimala že Maje. Dr. Kajdič je objavil 30 znanstvenih člankov, zanimajo ga predvsem udarni valovi v bližini Zemlje, ki nastanejo kot posledica dejavnosti Sonca. V Sloveniji je septembra zbral vesoljske fizike z vsega sveta, ki so predstavljali svoja najnovejša dognanja, do katerih so prišli ob pomoči podatkov, ki jih že več kot 15 let zbira misija Cluster. Sodelovanje pri evropskih in globalnih vesoljskih projektih je priložnost tudi za slovenska podjetja, ki so že aktivna na področju 3D tiska. Z dr. Primožem Kajdičem se je pogovarjal Luka Hvalc.


14.09.2017

Študij biologije je bila pragmatična odločitev

Čeprav ga je mikal študij umetnosti, se je odločil za biologijo: “To je bila čisto pragmatična odločitev, ker tudi v tem vidim estetiko, življenje ima neko lepoto v sebi,” pravi dr. Jernej Ule, molekularni biolog, ki že več kot deset let dela in raziskuje v tujini. Zdaj živi v Londonu. Na univerzi University College v Londonu raziskuje nastanek nevrodegenerativnih bolezni, v tem obdobju je predvsem vpet v raziskovanje morebitnega zdravila za amiotrofično lateralno sklerozo. Več o molekularni biologiji, življenju v Londonu, tekmovalnosti v raziskovalni panogi, lepoti staranja in poetičnosti življenja pa v pogovoru z Majo Stepančič.


Stran 16 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov