Predlogi
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
V teh dneh, ko z neba pada voda zdaj v kapljicah zdaj v snežinkah, se bomo v Frekvenci X vprašali, od kod neki se je vsa ta voda sploh vzela. Da je Zemlja Modri planet, torej polna vode, vira življenja, se zdi samoumevno. Pa ni čisto tako. Če je vir življenja voda, kaj je vir vode?
Voda, ki jo danes vidimo skorajda na vsakem kotičku našega planeta, je morala od nekod priti. Možnosti sta samo dve: tu je bila že od samega nastanka Zemlje ali pa je na Zemljo prispela pozneje.
V teh dneh, ko z neba pada voda zdaj v kapljicah zdaj v snežinkah, se bomo v Frekvenci X vprašali, od kod neki se je vsa ta voda sploh vzela. Da je Zemlja Modri planet, torej polna vode, vira življenja, se zdi samoumevno. Pa ni čisto tako. Če je vir življenja voda, kaj je vir vode?
Voda, ki jo danes vidimo skorajda na vsakem kotičku našega planeta, je morala od nekod priti. Možnosti sta samo dve: tu je bila že od samega nastanka Zemlje ali pa je na Zemljo prispela pozneje.
V oblaku kamenja in prahu, iz katerega je pred 4,5 milijardami let nastala Zemlja, je bilo zagotovo precej ledu. V oddaljenih kotičkih Osončja v prahu, ki se ni sprijel v planete ali Sonce, ta led najdemo še danes. Toda ko je Zemlja nastala, je bila tako vroča, da bi se vsa prosta voda uparila in bi jo Sončev veter odpihnil. Zemlja bi bila morala biti suha kot poper – kot so danes njeni sorodniki Merkur, Venera in Mars. Pa ni, prav dobro namočena je.
Kako sploh lahko ugotovimo, od kod je voda? Voda ni vodi enaka. Tudi popolnoma čista voda ima svoj podpis, ki ga znanstveniki imenujejo izotopsko razmerje. Obstajata dve vrsti vodika – navaden vodik in devterij, ki ju oba najdemo v vodi. Zato imamo lahko in težko vodo. Razmerje med njima pove, od kod je voda. Na Zemlji je to razmerje 6500:1 v prid lahki vodi, drugod pa drugačno.
Če se je med burnim nastankom Zemlja res posušila, so jo v poznejših milijoni let postopoma prinesli kometi in asteroidi, ki so padali na njo. Še danes na Zemljo vsako leto iz vesolja prileti 30-100.000 ton vesoljskih smeti, v mladosti pa je bilo Osončje še občutno bolj polno prahu. Zato bi bilo mogoče, da so vodo prinesli meteoriti in kometi.
"Kometi naj bi prispevali približno odstotek trenutne vode na površju Zemlje, asteroidi in meteoriti bi lahko prispevali desetino vode, ostalo pa prihaja iz notranjosti našega planeta. Takšno je moje mnenje." – dr. Kathrin Altwegg
Podpis vode v kometih, torej izotopsko razmerje med težko in lahko vodo, je občutno drugačno od tistega na Zemlji. Evropska vesoljska agencija je leta 2014 pristala na kometu Čurjumov-Gerasimenko, kar je bil prvi pristanek na kateremkoli kometu v zgodovini. Misija, ki se je končala septembra lani, je pokazala, da je razmerje med težko in lahko vodo v kometih trikrat večje od Zemeljskega. To razmerje so doslej izmerili na enajstih kometih in samo na enem je bilo približno podobno Zemeljskemu.
Meteoriti imajo sicer veliko manj vode kakor kometi, a če jih je bilo dovolj, bi teoretično lahko poskrbeli za modrino na našem planetu. Toda vsi meteoriti vsebujejo nekaj plina ksenona, ki bi ga skupaj z vodo zanesli na Zemljo. Ksenon je v Zemljinem ozračju, a ga je 10-krat premalo, da bi lahko bili meteoriti vir vode. Problem manjkajočega ksenona še ni razrešen – bodisi meteoriti niso zanesli večjih količin vode na zemljo bodisi se je ksenon nekam izgubil. Nove raziskave kažejo, da je verjetno razlog drugi.
Če voda ni prišla na Zemljo pozneje, potem se je morala med vročo mladostjo nekako skriti na Zemlji. Dr. Wendy Panero z Univerze Ohio State je odkrila, da bi mineral ringwoodit lahko predstavljal to skrivališče. Voda, ki je bila prisotna ob nastanku Zemlje, bi se lahko absorbirala v ringwoodit globoko pod površjem. Tam bi bila varna tudi pred visokimi temperaturami. Ko je mineral ringwoodit počasi plaval proti površju, je shranjena voda začela napolnjevati oceane.
"Izračuni kažejo, da gre za od ena do dvakrat toliko vode, kot je je na površju." - dr. Wendy Panero
Da to niso le teorije, je pokazalo odkritje velikanskih podzemnih rezervoarjev vode v kamninah, ki so jih našli v Braziliji. Na globini 410-660 km so našli velikanska polja ringwoodita, ki vsebujejo dva odstotka vode. To se sliši malo, a ker gre za ogromne prostornine, je vode tu ogromno – več kot na celotnem površju. Podobne rezervoarje so odkrili tudi v Severni Ameriki in so, kot kaže, prisotni še drugod. Merili so, kako se potresni valovi premikajo skozi Zemljo, in iz rezultatov sklepali, da je 700 kilometrov pod površjem veliko namočenega ringwoodita.
Pravilne so seveda vse tri razlage – nekaj vode je na Zemlji obstalo od samega nastanka, nekaj so jo prinesli kometi, nekaj pa asteroidi. Vprašanje pa je, kateri prispevek je največji. Trenutno kaže, da je za današnjo vodnatost zadostovala voda, ki je bila na Zemlji že od samega nastanka. Kljub visokim temperaturam in negostoljubnemu površju se je uspela skriti v različne minerale in globoko pod površjem preživeti do današnjih hladnejših dni.
In to so fantastične novice. Tudi za iskanje nezemljskega življenja. Če je voda od samega začetka ostala na Zemlji, je podobno zelo verjetno še na številnih drugih planetih. Morda je suh Merkur izjema in ne pravilo. In morda se je vsaj na enem vlažnem planetu kakšna organska molekula začela spontano podvojevati …
Ko vam bo torej naslednjič na obraz padla kakšna snežinka, se spomnite, da je veliko njenih molekul preživelo milijarde let vročine globoko pod površjem, medtem ko so jih nekaj prinesli kometi iz oddaljenih predelov Osončja.
V oddaji smo obiskali tudi Prirodoslovni muzej v Ljubljani, kjer nam je zbirko mineralov, ki imajo takšne strukturne značilnosti, o katerih je govorila Wendy Panero, razkazal dr. Miha Jeršek.
694 epizod
Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.
V teh dneh, ko z neba pada voda zdaj v kapljicah zdaj v snežinkah, se bomo v Frekvenci X vprašali, od kod neki se je vsa ta voda sploh vzela. Da je Zemlja Modri planet, torej polna vode, vira življenja, se zdi samoumevno. Pa ni čisto tako. Če je vir življenja voda, kaj je vir vode?
Voda, ki jo danes vidimo skorajda na vsakem kotičku našega planeta, je morala od nekod priti. Možnosti sta samo dve: tu je bila že od samega nastanka Zemlje ali pa je na Zemljo prispela pozneje.
V teh dneh, ko z neba pada voda zdaj v kapljicah zdaj v snežinkah, se bomo v Frekvenci X vprašali, od kod neki se je vsa ta voda sploh vzela. Da je Zemlja Modri planet, torej polna vode, vira življenja, se zdi samoumevno. Pa ni čisto tako. Če je vir življenja voda, kaj je vir vode?
Voda, ki jo danes vidimo skorajda na vsakem kotičku našega planeta, je morala od nekod priti. Možnosti sta samo dve: tu je bila že od samega nastanka Zemlje ali pa je na Zemljo prispela pozneje.
V oblaku kamenja in prahu, iz katerega je pred 4,5 milijardami let nastala Zemlja, je bilo zagotovo precej ledu. V oddaljenih kotičkih Osončja v prahu, ki se ni sprijel v planete ali Sonce, ta led najdemo še danes. Toda ko je Zemlja nastala, je bila tako vroča, da bi se vsa prosta voda uparila in bi jo Sončev veter odpihnil. Zemlja bi bila morala biti suha kot poper – kot so danes njeni sorodniki Merkur, Venera in Mars. Pa ni, prav dobro namočena je.
Kako sploh lahko ugotovimo, od kod je voda? Voda ni vodi enaka. Tudi popolnoma čista voda ima svoj podpis, ki ga znanstveniki imenujejo izotopsko razmerje. Obstajata dve vrsti vodika – navaden vodik in devterij, ki ju oba najdemo v vodi. Zato imamo lahko in težko vodo. Razmerje med njima pove, od kod je voda. Na Zemlji je to razmerje 6500:1 v prid lahki vodi, drugod pa drugačno.
Če se je med burnim nastankom Zemlja res posušila, so jo v poznejših milijoni let postopoma prinesli kometi in asteroidi, ki so padali na njo. Še danes na Zemljo vsako leto iz vesolja prileti 30-100.000 ton vesoljskih smeti, v mladosti pa je bilo Osončje še občutno bolj polno prahu. Zato bi bilo mogoče, da so vodo prinesli meteoriti in kometi.
"Kometi naj bi prispevali približno odstotek trenutne vode na površju Zemlje, asteroidi in meteoriti bi lahko prispevali desetino vode, ostalo pa prihaja iz notranjosti našega planeta. Takšno je moje mnenje." – dr. Kathrin Altwegg
Podpis vode v kometih, torej izotopsko razmerje med težko in lahko vodo, je občutno drugačno od tistega na Zemlji. Evropska vesoljska agencija je leta 2014 pristala na kometu Čurjumov-Gerasimenko, kar je bil prvi pristanek na kateremkoli kometu v zgodovini. Misija, ki se je končala septembra lani, je pokazala, da je razmerje med težko in lahko vodo v kometih trikrat večje od Zemeljskega. To razmerje so doslej izmerili na enajstih kometih in samo na enem je bilo približno podobno Zemeljskemu.
Meteoriti imajo sicer veliko manj vode kakor kometi, a če jih je bilo dovolj, bi teoretično lahko poskrbeli za modrino na našem planetu. Toda vsi meteoriti vsebujejo nekaj plina ksenona, ki bi ga skupaj z vodo zanesli na Zemljo. Ksenon je v Zemljinem ozračju, a ga je 10-krat premalo, da bi lahko bili meteoriti vir vode. Problem manjkajočega ksenona še ni razrešen – bodisi meteoriti niso zanesli večjih količin vode na zemljo bodisi se je ksenon nekam izgubil. Nove raziskave kažejo, da je verjetno razlog drugi.
Če voda ni prišla na Zemljo pozneje, potem se je morala med vročo mladostjo nekako skriti na Zemlji. Dr. Wendy Panero z Univerze Ohio State je odkrila, da bi mineral ringwoodit lahko predstavljal to skrivališče. Voda, ki je bila prisotna ob nastanku Zemlje, bi se lahko absorbirala v ringwoodit globoko pod površjem. Tam bi bila varna tudi pred visokimi temperaturami. Ko je mineral ringwoodit počasi plaval proti površju, je shranjena voda začela napolnjevati oceane.
"Izračuni kažejo, da gre za od ena do dvakrat toliko vode, kot je je na površju." - dr. Wendy Panero
Da to niso le teorije, je pokazalo odkritje velikanskih podzemnih rezervoarjev vode v kamninah, ki so jih našli v Braziliji. Na globini 410-660 km so našli velikanska polja ringwoodita, ki vsebujejo dva odstotka vode. To se sliši malo, a ker gre za ogromne prostornine, je vode tu ogromno – več kot na celotnem površju. Podobne rezervoarje so odkrili tudi v Severni Ameriki in so, kot kaže, prisotni še drugod. Merili so, kako se potresni valovi premikajo skozi Zemljo, in iz rezultatov sklepali, da je 700 kilometrov pod površjem veliko namočenega ringwoodita.
Pravilne so seveda vse tri razlage – nekaj vode je na Zemlji obstalo od samega nastanka, nekaj so jo prinesli kometi, nekaj pa asteroidi. Vprašanje pa je, kateri prispevek je največji. Trenutno kaže, da je za današnjo vodnatost zadostovala voda, ki je bila na Zemlji že od samega nastanka. Kljub visokim temperaturam in negostoljubnemu površju se je uspela skriti v različne minerale in globoko pod površjem preživeti do današnjih hladnejših dni.
In to so fantastične novice. Tudi za iskanje nezemljskega življenja. Če je voda od samega začetka ostala na Zemlji, je podobno zelo verjetno še na številnih drugih planetih. Morda je suh Merkur izjema in ne pravilo. In morda se je vsaj na enem vlažnem planetu kakšna organska molekula začela spontano podvojevati …
Ko vam bo torej naslednjič na obraz padla kakšna snežinka, se spomnite, da je veliko njenih molekul preživelo milijarde let vročine globoko pod površjem, medtem ko so jih nekaj prinesli kometi iz oddaljenih predelov Osončja.
V oddaji smo obiskali tudi Prirodoslovni muzej v Ljubljani, kjer nam je zbirko mineralov, ki imajo takšne strukturne značilnosti, o katerih je govorila Wendy Panero, razkazal dr. Miha Jeršek.
Na rehabilitaciji v Sloveniji sta mladostnika iz Gaze, ki sta bila huda poškodovana ob napadih z brezpilotniki. Moderno vojskovanje, ki ga poganjata umetna inteligenca in avtonomno orožje, je dodatno kruto, hkrati pa se ob nejasni regulaciji odpirajo nove moralne, etične in pravne dileme. Kaj še lahko prinese razvoj tehnologije na svetovnih bojiščih? Pod drobnogled smo vzeli tudi primere, ko metapodatkovna analiza ni zanesljiva pri izbiranju tarč in kako tehnologije postanejo izgovor pri prevzemanju odgovornosti.
Moderno bojevanje se je ob aktualnih vojnah močno spremenilo, hkrati pa se ob nejasni regulaciji odpirajo dodatne moralne, etične in pravne dileme. Kaj še lahko prinese razvoj tehnologije, kako je z avtonomnim orožjem? Pod drobnogled najprej jemljemo brezpilotne letalnike oziroma drone, ki zelo spreminjajo razmere in taktike na bojiščih.
V tednih, ko se približujemo referendumu o novem bloku jedrske elektrarne, se v Frekvenci X sprašujemo, kako deluje jedrska elektrarna, kako s cepitvijo atomov nastaja električna energija. Obiskali smo jedrsko elektrarno v Krškem, pri tem spremljali delo v nadzorni sobi, poizvedovali, kako skladiščijo visokoradioaktivne odpadke, in preverili, kako dobro je elektrarna pripravljena na morebitne hude naravne in druge nesreče.
Razvoj umetnih nevronskih mrež, kar je strojno učenje pripeljalo do neslutenih razsežnosti, molekule, ki imajo posebno vlogo pri uravnavanju delovanja genov in dosežki na področju raziskovanja proteinov. Znanstveniki v ozadju teh odkritij so letošnji prejemniki Nobelovih nagrad in v ospredje jih postavljamo tudi v tokratni Frekvenci X. Čemu so s svojimi odkritji tlakovali pot, kako so vplivali na razvoj znanosti in kakšna je njihova raziskovalna pot.
V današnji oddaji odkrivamo, kako lahko znanost postane zanimiva in dostopna vsakomur. Prvi gost je Petr Brož, češki planetarni znanstvenik in uspešen pisatelj, ki s svojo sproščeno komunikacijo premošča prepad med zapletenimi pojavi in javnostjo. Pogovarjali smo se še s Sašo Cecijem, hrvaškim fizikom in priljubljenim komunikatorjem znanosti, ki dokazuje, da lahko znanost ob glasbi in kozarčku najljubše pijače navduši še takšnega nepoznavalca. Ob koncu pa še v svet znanstvenega gledališča iz Bonna, kjer študentje fizike s kreativnimi predstavami po Evropi širijo ljubezen do znanosti.
Je biblična zgodba o Noetovi barki znanstveno sploh mogoča? Zakaj vrsti grozi izumrtje, če se ohrani le nekaj njenih predstavnikov? V zadnji epizodi Xkurzije na Valu 202 se podajamo v svet molekularne ekologije z raziskovalci Fakultete za matematiko, naravoslovje in informacijske tehnologije Univerze na Primorskem, ki skušajo s pomočjo genetike razumeti, kako hitre spremembe v okolju vplivajo na ogroženost posameznih vrst živih bitij. Pri tem stavijo tudi na pomoč javnosti in bioinformatike. Predstavili so nam, kako na terenu zbirajo vzorce genetskega materiala, kako tega potem pripravijo in preučujejo v laboratoriju in kakšna je nadaljnja računalniška obdelava. Sogovorniki so člani skupine za molekularno ekologijo prof. dr. Elena Bužan, Aja Bončina, Urša Gerič in Luka Dunis.
Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.
Xkurzija gre tokrat v laboratorij na prostem. Za geografe je namreč laboratorij kar cel svet in Jan Grilc se je z dr. Blažem Repetom odpravil na geografski izlet po Ljubljani. Opremo sta naložila kar na kolo in preučevala sestavo kamnin, vzorčila prst in odkrivala invazivne rastline. Kaj vse skrivajo ljubljanska tla? Kako je človek vplival na podobo naravnega parka in kako upravljati s tlemi v gosto poseljenem mestu?
Kaj skupnega imajo brbotanje, vonj po žveplu in železu ter zvok tekoče vode? V Xkurziji potujemo severovzhodno, natančneje med mineralne vrelce in mofete, posebne strukture naravnega izvira čistega in hladnega ogljikovega dioksida. V Ščavniški dolini v bližini Gornje Radgone obiščemo Ivanjševsko, Lokavško in Poličko slatino, s sabo vzamemo veliko glasnih in malo tišjih pripomočkov, ne pozabimo niti na milne mehurčke, ki nam pomagajo pri posebnem preizkusu.
Dobrodošli globoko v notranjosti človeškega telesa. V Xkurziji se namreč odpravljamo vse do naših mišic, kjer opazujemo njihovo električno aktivnost, natančneje aktivnost 639 skeletnih mišic, ekskluzivno pa prisluhnemo tudi zvoku ob njihovem krčenju.
Kolikokrat ste o kom, ki je delaven, slišali reči: “Priden je kot čebela,” nikoli pa niste slišali: “Marljiv je kot čmrlj?” Tako je morda zato, ker v ljudskem izročilu velja, da so čmrlji leni in počasni, čebele pa hitre in delavne. A kot lahko spoznamo na tokratni XKurziji, so čmrlji nenadomestljivi in še kako pomembni opraševalci. Ali ste vedeli, da so veliko hitrejši in spretnejši kot medonosna čebela? Da so sposobni opraševati tudi v vetru, dežju in mrazu in da je danes evropska trgovina s čmrlji vredna 50 milijonov evrov? Če smo vzbudili vašo radovednost, vabljeni z nami na obisk laboratorija za čmrlje na Nacionalnem inštitutu za biologijo v Ljubljani. Naš sogovornik je poznavalec in ljubitelj čmrljev dr. Danilo Bevk.
Obiskali smo stalne prebivalce številnih cerkva po državi – netopirje. V zadnjih 20 letih so biologi pregledali več kot 1700 stavb kulturne dediščine in netopirje našli v štirih petinah vseh stavb, najpogosteje prav v cerkvah.
Je slovenski šport v primeri s športom drugih olimpijskih narodov res nekaj izjemnega? Kaj o tem pravijo številke? V Frekvenci X se nam bo pridružil Slavko Jerič, ki že vrsto let kot športni statistik spremlja številke v športu, nedavno pa je izdal tudi knjigo Statistika za začetnike, ob pomoči katere se lahko čisto vsi prelevimo v (športne) statistike. V pogovoru z njim bomo osvetlili, kaj je prav, kaj narobe glede najpogostejših primerjav držav na olimpijskih igrah, kaj vpliva na primat nekaterih narodov v nekaterih disciplinah in koliko medalj se Sloveniji nasmiha letos.
Na predolimpijske počitniške četrtke opozarjamo na izplen znanstvenega leta na Valu. Letos smo v Frekvenci X raziskovali tudi sindrom prevaranta, človeško napako in učinkoviti altruizem.
Na predolimpijske počitniške četrtke opozarjamo na izplen znanstvenega leta na Valu. Letos smo v Frekvenci X raziskovali tudi nevarne odmerke nenevarnih snovi, obiskali smo čisto pravo gradbišče na drugem tiru pri Postojni, se pozanimali o znanosti gradnje predorov, odpravili smo se po sledeh meteoritov, ki so padli na naša tla, dotaknili smo se celo Lune, na koncu pa se podučili o pasteh skrajno predelane hrane.
Na predolimpijske počitniške četrtke opozarjamo na izplen znanstvenega leta na Valu. Letos smo v Frekvenci X razmišljali o mestih prihodnostih, o besedah trajnostno, zeleno, pa tudi o strojnem učenju in marsikateri nagradi v znanosti. Pozabili pa nismo niti na merjenje možganske aktivnosti.
Na predolimpijske počitniške četrtke opozarjamo na izplen znanstvenega leta na Valu. Letos je Frekvenca X sledila marsičemu in potikali smo se na vseh mogočih raziskovalnih misijah – od mušic, Cerna, oceanov, do liliputancev in velikanov.
Turbulence so nekaj najobičajnejšega, s čimer se letala srečujejo vsak dan. Kljub temu se ob tresljaju številni prestrašijo, ker so prepričani, da je nekaj narobe pri letu. Vsako leto se letala srečajo z 68 tisoč zmernimi do hudimi turbulencami, nekatere so tako močne, da lahko povzročijo poškodbe letala, v njem pa se poškodujejo tudi potniki. Nazadnje smo o intenzivni turbulenci slišali maja, na letu London-Singapur je bilo več kot sto poškodovanih, en potnik je umrl. Ob tem se pri Frekvenci X sprašujemo, ali nas lahko turbulenca preseneti, kakšne vrste turbulenc obstajajo, kako turbulentno je območje Slovenije in ali bo zaradi podnebnih sprememb zmernih ali hujših turbulenc vse več?
Bolgarija je članica Evropske unije, ki vlaga v nekatere zanimive znanstveno-raziskovalne projekte. Od leta 1988 imajo na otoku Livingstone celo svojo antartktično postajo, kjer v sklopu različnih mednarodnih odprav potekajo raziskave s področja geologije, glaciologije, oceanografije, biologije, topografije … V aktualni ekspediciji so med drugim raziskovali vpliv podnebnih sprememb na ledenike in prisotnost mikroplastike na Antarktiki.
Ste se kdaj vprašali, kako nastane plastenka? Mnogo ljudi je ne povezuje z nafto in tem, da pred svojim nastankom v obliki surovin, ki jih pridobijo iz črnega zlata, dobesedno obkroži pol sveta. Pri vsem tem je največji paradoks, da plastenka svojemu namenu služi smešno malo časa, večji del svojega življenjskega cikla pa nato preždi kot odpadek. A ne glede na to, v kateri smetnjak ali zabojnik jo odvržemo, bi morali predvsem razmišljati o tem, kako zmanjšati njihovo proizvodnjo, kako se ne utopiti v plastenkah. V Frekvenci X sledimo plastenki – od nafte do odpadka.
Neveljaven email naslov