Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Kvantni računalniki. Kako blizu smo kvantnim računalnikom, bodo sploh kdaj tako splošno uporabni, kot so ti, ki jih uporabljamo danes?

27.10.2011


Ideja o kvantnem računalniku se je porodila znamenitemu ameriškemu fiziku Richardu Feynmannu, Nobelovemu nagrajencu za kvantno teorijo elektro magnetizma, ko je leta 1982 razmišljal o možnosti univerzalne simulacije fizikalnih procesov.

Za vsaj osnovno razumevanje delovanja kvantnega računalnika moramo razumeti dva pojmovna koncepta, v katerih je kvantna fizika bistveno različna od klasične newtonowske fizike.


Prvi je princip »kvantne superpozicije«, ki pravi, da so kvantna stanja v resnici nekakšne kombinacije vseh mogočih klasičnih stanj hkrati. Drugi, še manj predstavljiv, za učinkovito delovanje kvantnega računalnika pa še bolj bistven, pa je koncept »kvantne prepletenosti«.

Kvantna prepletenost se npr. že uporablja za povsem varno komunikacijo po povsem običajnih, komercialnih telekomunikacijskih optičnih linijah. Že leta 2004 je npr. skupina prof. Antona Zeilingerja na Dunaju uspešno izvedla demonstracijo varnega kvantnega bančnega nakazila.

Razlog, da kvanti računalniki še niso dosegljiva realnost, tiči v težko premostljivih tehnoloških ovirah, ki so povezane s pojavom, ki mu fiziki pravijo dehokerenca. Fiziki in inženirji si intenzivno prizadevajo poiskati tehnološke rešitve, kjer bi vlogo dekoherence ohromili ali vsaj omilili.

Glede na to, da v laboratorijih za zdaj raziskujejo kar nekaj še povsem različnih tehnologij, je videti, da smo od končne odločitve o najbolj perspektivni rešitvi še precej daleč. Testne tehnologije za zdaj segajo od hladnih atomov, ki jih z dobro umerjenimi laserskimi sunki vzdržujejo pri izjemno nizkih temperaturah, prek magnetne resonance do kvantno prepletenih superprevodnih električnih tokovnih zank v nekakšnih »kvantnih čipih«.

INTERVJU

Gost Frekvence X je bil prof. Tomaž Prosen, ki se ukvarja se s teoretično in matematično fiziko in s področjem kvantne informatike na Fakulteti za matematiko in fiziko v Ljubljani:

Svet kvantne fizike, iz katerega zajema tudi kvantno računalništvo, je težko umljiv celo fizikom, kaj šele običajnim ljudem. Ga je sploh mogoče razumeti?

Težko. Seveda si pomagamo s prispodobami iz vsakdanjega sveta, predvsem, ko učimo kvantno fiziko, vendar je vse takšne analogije treba jemati z rezervo. Na primer znamenita Schrödingerjeva mačka, s katero ponazorimo princip kvantne superpozicije stanj mačke v povsem izolirani škatli s strupom, ki je lahko v vsoti stanj živa in mrtva hkrati. Problem tiči v naših čutilih, ki določajo naš predstavni svet. Vsa namreč temeljijo na makroskopskih pojavih, kjer so kvantni efekti že povsem ohromljeni zaradi pojava, ki mu pravimo dekoherenca. Po domače, zaradi nenehnega opazovanja velikega brata iz okolice.

Za običajno intuicijo ljudi so zakoni kvantne fizike dokaj nenavadni, kaj pa je v kvantni mehaniki tako zelo drugače?

Verjetno največji miselni paradoks je sama možnost obstoja superpozicij, t. j. dejstva, da je lahko kvantni sistem v več klasičnih stanjih hkrati. Npr. isti atom je lahko hkrati tu in tam, kvantna vrtavka se lahko hkrati vrti v dveh smereh. Možnost, da bi šlo zgolj za verjetnostno porazdelitev med več možnimi klasičnimi stanji izključimo z opazovanjem interference, podobno kot pri valovih. Npr. mala žogica v obliki molekule fuklerena, t. j. ogljika C60, gre lahko hkrati skozi več luknjic v mrežasti oviri, kar dokažejo tako, da lahko na zaslon oz. detektor prileti samo v točno določenih smereh. Podobno kot svetloba z zvezde, ki jo zvečer opazujemo iz spalnice skozi tkanino prosojnih zaves, ko namesto ene svetle pikice vidimo enakomeren mrežast vzorček interferenčnih pikic. Obstoj prepletenih kvantnih stanj pa omogoča npr. pojav kvantne teleportacije, nekaj precej podobnega kot v fantastični zgodbi StarTrek. Vendar kvantna teleportacija ni samo ideja, v zadnjih letih jo znajo v laboratorijih že realizirati. Npr. kvantna teleportacija je tudi način, kako kvantni računalnik prepisuje in transportira svoje kvantne podatke iz enega registra v drugega.

Kvantni računalniki bi lahko nekatere težke računske probleme rešili bistveno hitreje kot klasični. So tudi nekaj, kar po zakonih kvantne mehanike mora obstajati, vendar za zdaj obstaja le njihova miselna konstrukcija. Zakaj jih je tako težko zgraditi, realizirati?

No, ni čisto res, da so zgolj miselna konstrukcija. Obstajajo preprosti eksperimentalni modeli kvantih računalnikov, ki povsem splošno lahko manipulirajo (računajo) z nekaj kvantnimi biti. Obstaja tudi nekakšen hibridni model kvantnega računalnika, takoimenovani D-Wave One, ki računa celo s 128 kvantnimi biti. Vseeno pa so tehnološke težave pri konstrukciji kvantnih računalnikov zelo velike. V glavnem so povezane s tako-imenovano dekoherenco, t. j. porušitvijo kvantne koherence, zaradi pomanjkljive izolacije kvantnega računalnika od okolice. Popolna izolacija pa spet ni mogoča, ker moramo na koncu kvantnega računanja rezultat odčitati. Pravimo, da moramo kvantni register pomeriti. Tako smo prisiljeni v nekakšno kompromisno izolacijo, ki nam omogoča omejeno število kvantnih operacij, preden dehoherenca kvantni račun pokvari. A težave, čeprav so hude, niso principielne.

Kvantni računalnik ni digitalni računalnik, ampak je trenutno še vedno bolj podoben analognemu računalniku, ki si zgolj pomaga s kvantno fiziko. Kaj sploh pričakujemo od kvantnega računalnika, kakšne so njegove posebnosti in odlike?

Za zdaj ni jasno, ali bo kvantni računalnik sploh kdaj tako splošno uporaben, kot so ti, ki jih uporabljamo danes. Seznam algoritmov / postopkov, ki jih kvantni računalnik rešuje bistveno hitreje kot klasični, je še vedno precej kratek. Kvantni računalnik tudi redko izračuna točen rezultat, saj je na koncu potrebno takoimenovano kvantno merjenje pri katerem – po Einsteinu – Bog vrže kocko. Za točno utemeljitev rezultata je zato treba postopek izvajanja programa na kvantnem računalniku večkrat ponoviti, podobno kot pri nekakšnem verjetnostnem poskušanju. Ima pa kvantni računalnik bistveno prednost pred klasičnim verjetnostnim strojem: za določitev ene izmen N reči je potrebno v povprečju poskusiti samo koren iz N-krat, ne pa N-krat kot pri klasičnem verjetnostnem računu.

Če želite poiskati eno stvar v popolnoma razmetani sobi in je v njej tema, potem boste, če veljajo samo zakoni klasične fizike in če je v sobi sto reči, morali stokrat ali pa recimo petdesetkrat v povprečju na slepo potegniti neznani predmet iz sobe in pogledati, če je pravi, da boste našli pravega. Če pa imate informacijo o predmetih zakodirano v kvantnem računalniku, se zgodi, da bo treba to narediti le desetkrat, kar je koren iz stokrat. Kvantna mehanika v tem smislu je povsem neintuitivna, da omogoča takšne paradoksalne stvari.

Je to, da je neke vrste verjetnostni stroj, težava ali bolj filozofsko vprašanje?

Kot sem poskusil pojasniti malo prej, to ni resna težava. Razen tega, da to pač ni digitalni stroj in zato rezultat računa ni nikoli eksakten. Kar pa sploh ni problematično, pri problemih, katerih rešitev je sicer težko poiskati, preveriti – preveriti, če je rešitev prava, pa ni težko. Na primer znameniti problem osmih kraljic, ki jih moramo po šahovnici razporediti tako, da se med seboj ne napadajo. Ali pa vprašanje, ali se da veliko celo število zapisati kot produkt dveh manjših, a še vedno velikih celih števil. To je v kriptografiji posebnega pomena.

Zdi se, da je pomembna filozofska iztočnica vprašanje, ali je kvantni računalnik morda prva zares umetna tvorba, ki jo narava sama po sebi sicer zares še ne uporablja. Če nevronske sisteme višje razvitih živali in ljudi lahko razumemo kot nekakšne verjetnostne računalnike (zaradi šuma, v katerem delujejo in ki je pomemben za njihovo učinkovitost), pa se zdi, da koncepta kvantnega računalnika narava še ni zares izkoristila. Potemtakem bi bil kvantni računalnik prvi zares umeten tehnološki koncept.

Ali to pomeni, da nekega pomembnega dela narave ljudje še ne obvladujemo? Se ob tem pojavljajo tudi filozofski zadržki?

Vprašanje je, če morda ravno zaradi tega, ker narava še sama ni našla koristne uporabe kvantnega računanja, ne obstajajo tudi resnejši razlogi, da bi imel tudi človek ob tem nepremostljive težave. Ampak za zdaj ne poznamo zakona narave, ki bi nam preprečeval zasnovo učinkovitega kvantnega računalnika.

Imajo pričakovanja, da bomo kmalu dobili splošno uporabne stroje, ki bi v vsem prekašali klasične računalnike, že kakšno realno podlago?

Da in ne. Vprašanje je, kaj bi bilo za vas zadosti splošno uporabno. Zdi se, da bodo prvi kvantni računalniki predvsem simulatorji za druge fizikalne procese, ali pa bodo reševali diskretne optimizacijske probleme, npr. iskali optimalen sprehod po zemljevidu in podobno. Takšne vrste problemov naj bi npr. znal učinkovito reševati nedavno predstavljeni Dwave one.


Frekvenca X

688 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Kvantni računalniki. Kako blizu smo kvantnim računalnikom, bodo sploh kdaj tako splošno uporabni, kot so ti, ki jih uporabljamo danes?

27.10.2011


Ideja o kvantnem računalniku se je porodila znamenitemu ameriškemu fiziku Richardu Feynmannu, Nobelovemu nagrajencu za kvantno teorijo elektro magnetizma, ko je leta 1982 razmišljal o možnosti univerzalne simulacije fizikalnih procesov.

Za vsaj osnovno razumevanje delovanja kvantnega računalnika moramo razumeti dva pojmovna koncepta, v katerih je kvantna fizika bistveno različna od klasične newtonowske fizike.


Prvi je princip »kvantne superpozicije«, ki pravi, da so kvantna stanja v resnici nekakšne kombinacije vseh mogočih klasičnih stanj hkrati. Drugi, še manj predstavljiv, za učinkovito delovanje kvantnega računalnika pa še bolj bistven, pa je koncept »kvantne prepletenosti«.

Kvantna prepletenost se npr. že uporablja za povsem varno komunikacijo po povsem običajnih, komercialnih telekomunikacijskih optičnih linijah. Že leta 2004 je npr. skupina prof. Antona Zeilingerja na Dunaju uspešno izvedla demonstracijo varnega kvantnega bančnega nakazila.

Razlog, da kvanti računalniki še niso dosegljiva realnost, tiči v težko premostljivih tehnoloških ovirah, ki so povezane s pojavom, ki mu fiziki pravijo dehokerenca. Fiziki in inženirji si intenzivno prizadevajo poiskati tehnološke rešitve, kjer bi vlogo dekoherence ohromili ali vsaj omilili.

Glede na to, da v laboratorijih za zdaj raziskujejo kar nekaj še povsem različnih tehnologij, je videti, da smo od končne odločitve o najbolj perspektivni rešitvi še precej daleč. Testne tehnologije za zdaj segajo od hladnih atomov, ki jih z dobro umerjenimi laserskimi sunki vzdržujejo pri izjemno nizkih temperaturah, prek magnetne resonance do kvantno prepletenih superprevodnih električnih tokovnih zank v nekakšnih »kvantnih čipih«.

INTERVJU

Gost Frekvence X je bil prof. Tomaž Prosen, ki se ukvarja se s teoretično in matematično fiziko in s področjem kvantne informatike na Fakulteti za matematiko in fiziko v Ljubljani:

Svet kvantne fizike, iz katerega zajema tudi kvantno računalništvo, je težko umljiv celo fizikom, kaj šele običajnim ljudem. Ga je sploh mogoče razumeti?

Težko. Seveda si pomagamo s prispodobami iz vsakdanjega sveta, predvsem, ko učimo kvantno fiziko, vendar je vse takšne analogije treba jemati z rezervo. Na primer znamenita Schrödingerjeva mačka, s katero ponazorimo princip kvantne superpozicije stanj mačke v povsem izolirani škatli s strupom, ki je lahko v vsoti stanj živa in mrtva hkrati. Problem tiči v naših čutilih, ki določajo naš predstavni svet. Vsa namreč temeljijo na makroskopskih pojavih, kjer so kvantni efekti že povsem ohromljeni zaradi pojava, ki mu pravimo dekoherenca. Po domače, zaradi nenehnega opazovanja velikega brata iz okolice.

Za običajno intuicijo ljudi so zakoni kvantne fizike dokaj nenavadni, kaj pa je v kvantni mehaniki tako zelo drugače?

Verjetno največji miselni paradoks je sama možnost obstoja superpozicij, t. j. dejstva, da je lahko kvantni sistem v več klasičnih stanjih hkrati. Npr. isti atom je lahko hkrati tu in tam, kvantna vrtavka se lahko hkrati vrti v dveh smereh. Možnost, da bi šlo zgolj za verjetnostno porazdelitev med več možnimi klasičnimi stanji izključimo z opazovanjem interference, podobno kot pri valovih. Npr. mala žogica v obliki molekule fuklerena, t. j. ogljika C60, gre lahko hkrati skozi več luknjic v mrežasti oviri, kar dokažejo tako, da lahko na zaslon oz. detektor prileti samo v točno določenih smereh. Podobno kot svetloba z zvezde, ki jo zvečer opazujemo iz spalnice skozi tkanino prosojnih zaves, ko namesto ene svetle pikice vidimo enakomeren mrežast vzorček interferenčnih pikic. Obstoj prepletenih kvantnih stanj pa omogoča npr. pojav kvantne teleportacije, nekaj precej podobnega kot v fantastični zgodbi StarTrek. Vendar kvantna teleportacija ni samo ideja, v zadnjih letih jo znajo v laboratorijih že realizirati. Npr. kvantna teleportacija je tudi način, kako kvantni računalnik prepisuje in transportira svoje kvantne podatke iz enega registra v drugega.

Kvantni računalniki bi lahko nekatere težke računske probleme rešili bistveno hitreje kot klasični. So tudi nekaj, kar po zakonih kvantne mehanike mora obstajati, vendar za zdaj obstaja le njihova miselna konstrukcija. Zakaj jih je tako težko zgraditi, realizirati?

No, ni čisto res, da so zgolj miselna konstrukcija. Obstajajo preprosti eksperimentalni modeli kvantih računalnikov, ki povsem splošno lahko manipulirajo (računajo) z nekaj kvantnimi biti. Obstaja tudi nekakšen hibridni model kvantnega računalnika, takoimenovani D-Wave One, ki računa celo s 128 kvantnimi biti. Vseeno pa so tehnološke težave pri konstrukciji kvantnih računalnikov zelo velike. V glavnem so povezane s tako-imenovano dekoherenco, t. j. porušitvijo kvantne koherence, zaradi pomanjkljive izolacije kvantnega računalnika od okolice. Popolna izolacija pa spet ni mogoča, ker moramo na koncu kvantnega računanja rezultat odčitati. Pravimo, da moramo kvantni register pomeriti. Tako smo prisiljeni v nekakšno kompromisno izolacijo, ki nam omogoča omejeno število kvantnih operacij, preden dehoherenca kvantni račun pokvari. A težave, čeprav so hude, niso principielne.

Kvantni računalnik ni digitalni računalnik, ampak je trenutno še vedno bolj podoben analognemu računalniku, ki si zgolj pomaga s kvantno fiziko. Kaj sploh pričakujemo od kvantnega računalnika, kakšne so njegove posebnosti in odlike?

Za zdaj ni jasno, ali bo kvantni računalnik sploh kdaj tako splošno uporaben, kot so ti, ki jih uporabljamo danes. Seznam algoritmov / postopkov, ki jih kvantni računalnik rešuje bistveno hitreje kot klasični, je še vedno precej kratek. Kvantni računalnik tudi redko izračuna točen rezultat, saj je na koncu potrebno takoimenovano kvantno merjenje pri katerem – po Einsteinu – Bog vrže kocko. Za točno utemeljitev rezultata je zato treba postopek izvajanja programa na kvantnem računalniku večkrat ponoviti, podobno kot pri nekakšnem verjetnostnem poskušanju. Ima pa kvantni računalnik bistveno prednost pred klasičnim verjetnostnim strojem: za določitev ene izmen N reči je potrebno v povprečju poskusiti samo koren iz N-krat, ne pa N-krat kot pri klasičnem verjetnostnem računu.

Če želite poiskati eno stvar v popolnoma razmetani sobi in je v njej tema, potem boste, če veljajo samo zakoni klasične fizike in če je v sobi sto reči, morali stokrat ali pa recimo petdesetkrat v povprečju na slepo potegniti neznani predmet iz sobe in pogledati, če je pravi, da boste našli pravega. Če pa imate informacijo o predmetih zakodirano v kvantnem računalniku, se zgodi, da bo treba to narediti le desetkrat, kar je koren iz stokrat. Kvantna mehanika v tem smislu je povsem neintuitivna, da omogoča takšne paradoksalne stvari.

Je to, da je neke vrste verjetnostni stroj, težava ali bolj filozofsko vprašanje?

Kot sem poskusil pojasniti malo prej, to ni resna težava. Razen tega, da to pač ni digitalni stroj in zato rezultat računa ni nikoli eksakten. Kar pa sploh ni problematično, pri problemih, katerih rešitev je sicer težko poiskati, preveriti – preveriti, če je rešitev prava, pa ni težko. Na primer znameniti problem osmih kraljic, ki jih moramo po šahovnici razporediti tako, da se med seboj ne napadajo. Ali pa vprašanje, ali se da veliko celo število zapisati kot produkt dveh manjših, a še vedno velikih celih števil. To je v kriptografiji posebnega pomena.

Zdi se, da je pomembna filozofska iztočnica vprašanje, ali je kvantni računalnik morda prva zares umetna tvorba, ki jo narava sama po sebi sicer zares še ne uporablja. Če nevronske sisteme višje razvitih živali in ljudi lahko razumemo kot nekakšne verjetnostne računalnike (zaradi šuma, v katerem delujejo in ki je pomemben za njihovo učinkovitost), pa se zdi, da koncepta kvantnega računalnika narava še ni zares izkoristila. Potemtakem bi bil kvantni računalnik prvi zares umeten tehnološki koncept.

Ali to pomeni, da nekega pomembnega dela narave ljudje še ne obvladujemo? Se ob tem pojavljajo tudi filozofski zadržki?

Vprašanje je, če morda ravno zaradi tega, ker narava še sama ni našla koristne uporabe kvantnega računanja, ne obstajajo tudi resnejši razlogi, da bi imel tudi človek ob tem nepremostljive težave. Ampak za zdaj ne poznamo zakona narave, ki bi nam preprečeval zasnovo učinkovitega kvantnega računalnika.

Imajo pričakovanja, da bomo kmalu dobili splošno uporabne stroje, ki bi v vsem prekašali klasične računalnike, že kakšno realno podlago?

Da in ne. Vprašanje je, kaj bi bilo za vas zadosti splošno uporabno. Zdi se, da bodo prvi kvantni računalniki predvsem simulatorji za druge fizikalne procese, ali pa bodo reševali diskretne optimizacijske probleme, npr. iskali optimalen sprehod po zemljevidu in podobno. Takšne vrste problemov naj bi npr. znal učinkovito reševati nedavno predstavljeni Dwave one.


19.09.2024

Xkurzija: Laboratorij dediščinske znanosti

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


12.09.2024

Xkurzija: Geografsko kolesarjenje po Ljubljani

Xkurzija gre tokrat v laboratorij na prostem. Za geografe je namreč laboratorij kar cel svet in Jan Grilc se je z dr. Blažem Repetom odpravil na geografski izlet po Ljubljani. Opremo sta naložila kar na kolo in preučevala sestavo kamnin, vzorčila prst in odkrivala invazivne rastline. Kaj vse skrivajo ljubljanska tla? Kako je človek vplival na podobo naravnega parka in kako upravljati s tlemi v gosto poseljenem mestu?


04.09.2024

Xkurzija: Med mineralnimi vrelci in mofetami po Ščavniški dolini

Kaj skupnega imajo brbotanje, vonj po žveplu in železu ter zvok tekoče vode? V Xkurziji potujemo severovzhodno, natančneje med mineralne vrelce in mofete, posebne strukture naravnega izvira čistega in hladnega ogljikovega dioksida. V Ščavniški dolini v bližini Gornje Radgone obiščemo Ivanjševsko, Lokavško in Poličko slatino, s sabo vzamemo veliko glasnih in malo tišjih pripomočkov, ne pozabimo niti na milne mehurčke, ki nam pomagajo pri posebnem preizkusu.


29.08.2024

Xkurzija: Meritve mišic in možganov v različnih okoljih

Dobrodošli globoko v notranjosti človeškega telesa. V Xkurziji se namreč odpravljamo vse do naših mišic, kjer opazujemo njihovo električno aktivnost, natančneje aktivnost 639 skeletnih mišic, ekskluzivno pa prisluhnemo tudi zvoku ob njihovem krčenju.


22.08.2024

Xkurzija: Čmrlji so pri opraševanju cvetov do štirikrat hitrejši od medonosnih čebel

Kolikokrat ste o kom, ki je delaven, slišali reči: “Priden je kot čebela,” nikoli pa niste slišali: “Marljiv je kot čmrlj?” Tako je morda zato, ker v ljudskem izročilu velja, da so čmrlji leni in počasni, čebele pa hitre in delavne. A kot lahko spoznamo na tokratni XKurziji, so čmrlji nenadomestljivi in še kako pomembni opraševalci. Ali ste vedeli, da so veliko hitrejši in spretnejši kot medonosna čebela? Da so sposobni opraševati tudi v vetru, dežju in mrazu in da je danes evropska trgovina s čmrlji vredna 50 milijonov evrov? Če smo vzbudili vašo radovednost, vabljeni z nami na obisk laboratorija za čmrlje na Nacionalnem inštitutu za biologijo v Ljubljani. Naš sogovornik je poznavalec in ljubitelj čmrljev dr. Danilo Bevk.


15.08.2024

Xkurzija: Na lovu za netopirji v turjaških cerkvah

Obiskali smo stalne prebivalce številnih cerkva po državi – netopirje. V zadnjih 20 letih so biologi pregledali več kot 1700 stavb kulturne dediščine in netopirje našli v štirih petinah vseh stavb, najpogosteje prav v cerkvah.


24.07.2024

Kaj o fenomenu slovenskega športa pravijo številke?

Je slovenski šport v primeri s športom drugih olimpijskih narodov res nekaj izjemnega? Kaj o tem pravijo številke? V Frekvenci X se nam bo pridružil Slavko Jerič, ki že vrsto let kot športni statistik spremlja številke v športu, nedavno pa je izdal tudi knjigo Statistika za začetnike, ob pomoči katere se lahko čisto vsi prelevimo v (športne) statistike. V pogovoru z njim bomo osvetlili, kaj je prav, kaj narobe glede najpogostejših primerjav držav na olimpijskih igrah, kaj vpliva na primat nekaterih narodov v nekaterih disciplinah in koliko medalj se Sloveniji nasmiha letos.


18.07.2024

Znanstveno leto na Valu, 4. del: Človeška napaka, sindrom prevaranta in učinkoviti altruizem

Na predolimpijske počitniške četrtke opozarjamo na izplen znanstvenega leta na Valu. Letos smo v Frekvenci X raziskovali tudi sindrom prevaranta, človeško napako in učinkoviti altruizem.


11.07.2024

Znanstveno leto na Valu, 3. del: Nevarni odmerki, predori, meteoriti in skrajno predelana hrana

Na predolimpijske počitniške četrtke opozarjamo na izplen znanstvenega leta na Valu. Letos smo v Frekvenci X raziskovali tudi nevarne odmerke nenevarnih snovi, obiskali smo čisto pravo gradbišče na drugem tiru pri Postojni, se pozanimali o znanosti gradnje predorov, odpravili smo se po sledeh meteoritov, ki so padli na naša tla, dotaknili smo se celo Lune, na koncu pa se podučili o pasteh skrajno predelane hrane.


09.07.2024

Znanstveno leto na Valu, 2. del: Mesta prihodnosti, strojno učenje, nagrade v znanosti in misija EEG

Na predolimpijske počitniške četrtke opozarjamo na izplen znanstvenega leta na Valu. Letos smo v Frekvenci X razmišljali o mestih prihodnostih, o besedah trajnostno, zeleno, pa tudi o strojnem učenju in marsikateri nagradi v znanosti. Pozabili pa nismo niti na merjenje možganske aktivnosti.


27.06.2024

Znanstveno leto na Valu, 1. del: Kant, Cern in oceani

Na predolimpijske počitniške četrtke opozarjamo na izplen znanstvenega leta na Valu. Letos je Frekvenca X sledila marsičemu in potikali smo se na vseh mogočih raziskovalnih misijah – od mušic, Cerna, oceanov, do liliputancev in velikanov.


20.06.2024

Turbulence so izjemno pogoste, a v večini niso nevarne za letalo

Turbulence so nekaj najobičajnejšega, s čimer se letala srečujejo vsak dan. Kljub temu se ob tresljaju številni prestrašijo, ker so prepričani, da je nekaj narobe pri letu. Vsako leto se letala srečajo z 68 tisoč zmernimi do hudimi turbulencami, nekatere so tako močne, da lahko povzročijo poškodbe letala, v njem pa se poškodujejo tudi potniki. Nazadnje smo o intenzivni turbulenci slišali maja, na letu London-Singapur je bilo več kot sto poškodovanih, en potnik je umrl. Ob tem se pri Frekvenci X sprašujemo, ali nas lahko turbulenca preseneti, kakšne vrste turbulenc obstajajo, kako turbulentno je območje Slovenije in ali bo zaradi podnebnih sprememb zmernih ali hujših turbulenc vse več?


12.06.2024

Bolgarska raziskovalna baza na Antarktiki

Bolgarija je članica Evropske unije, ki vlaga v nekatere zanimive znanstveno-raziskovalne projekte. Od leta 1988 imajo na otoku Livingstone celo svojo antartktično postajo, kjer v sklopu različnih mednarodnih odprav potekajo raziskave s področja geologije, glaciologije, oceanografije, biologije, topografije … V aktualni ekspediciji so med drugim raziskovali vpliv podnebnih sprememb na ledenike in prisotnost mikroplastike na Antarktiki.


06.06.2024

Plastenka: od nafte do zelenega zavajanja

Ste se kdaj vprašali, kako nastane plastenka? Mnogo ljudi je ne povezuje z nafto in tem, da pred svojim nastankom v obliki surovin, ki jih pridobijo iz črnega zlata, dobesedno obkroži pol sveta. Pri vsem tem je največji paradoks, da plastenka svojemu namenu služi smešno malo časa, večji del svojega življenjskega cikla pa nato preždi kot odpadek. A ne glede na to, v kateri smetnjak ali zabojnik jo odvržemo, bi morali predvsem razmišljati o tem, kako zmanjšati njihovo proizvodnjo, kako se ne utopiti v plastenkah. V Frekvenci X sledimo plastenki – od nafte do odpadka.


30.05.2024

Mentor leta dr. Roman Kuhar in pregled znanosti v maju

Konec maja je čas za pregled znanstvenih vrhov meseca, ogromno se je dogajalo, predvsem v domačem znanstvenem okolju. Mladi osnovnošolci s I. osnovne šole v Celju so zmagali na tekmovanju FIRST® LEGO® League na Norveškem. Ta mesec smo tudi pri nas opazovali severni sij. V UKC Ljubljana so objavili pomembno študijo o zdravljenju bolnikov s tveganjem za motnje srčnega ritma. Dobili smo komunikatorko znanosti, to je postala upokojena profesorica botanike in biologinje celice na Univerzi v Ljubljani dr. Marina Dermastia. Razglasili pa so tudi mentorja leta, ki je gost naše znanstvene oddaje.


23.05.2024

Meteoriti: Skrivnostna brezplačna dostava iz vesolja

V soboto, 18. maja zvečer, so na nebu nad Portugalsko in Španijo opazili svetlo kroglo. Dogodek je posnela Evropska vesoljska agencija s svojimi kamerami v Cáceresu v Španiji. Potrdili so, da je šlo za kos kometa, ki je verjetno zgorel nad Atlantikom na višini okoli 60 kilometrov. Še vedno pa preučujejo njegovo velikost in pot, da bi ocenili ali obstaja možnost, da je kakšen del dosegel površje Zemlje in postal meteorit. Košček vesolja, ki pristane na Zemljinem površju, ki ga hudomušno lahko opišemo kot najcenejšo dostavo iz vesolja, s seboj med drugim prinašajo kopico informacij o zgodnjem nastajanju osončja. Podajamo se na vesoljsko detektivko magnetnih ostankov vesolja z izjemno gostoto, občudujemo zbirko meteoritov, ki jo hrani Prirodoslovni muzej Slovenije. Zakaj največ meteoritov najdejo na Antarktiki? Kako se lahko iskanja meteoritov lotite s pometanjem? Za tiste, ki vas je ob poslušanju morda prijela iskalna mrzlica, pa še ena spodbudna informacija: v primeru, da najdete meteorit, ga lahko, če zagotovite ustrezne pogoje za hrambo, obdržite.


16.05.2024

Učinkoviti altruizem med racionalnostjo in čustvi

Kako lahko naredim kar največ dobrega? Naj premišljeno doniram samo skrbno izbranim humanitarnim organizacijam ali naj se raje odločam čustveno in pomagam po trenutni inerciji? Pod drobnogled smo vzeli koncept učinkovitega altruizma, ki skuša pomagati na podlagi merljivih dokazov, hkrati pa je deležen tudi številnih kritik. Razpravljamo o različnih konceptih altruizma in dobrodelnosti, vlogi posameznika, države in korporacij.


09.05.2024

Prevare v znanosti: Od superjunaka do lažnivca

Ranga Dias z ameriške univerze Rochester je leta 2020 zaslovel, potem ko je v reviji Nature poročal o prvem superprevodniku pri sobni temperaturi. To je bil velikanski uspeh, eden izmed svetih gralov moderne fizike, ki je Diasu na široko odprl pot do Nobelove nagrade, svetu pa do učinkovitejše prihodnosti z manj izgubami energije. A danes vemo, da je za njegovim domnevnim odkritjem prevara in vrsta goljufij. Poneverbe podatkov v znanosti postajajo vse pogostejše, dodatno skrb vnaša sivo polje umetne inteligence, ki namesto znanstvenikov lahko piše tudi članke. Kako je z integriteto v znanosti, kako lahko vemo, kaj je res in kdo zavaja?


02.05.2024

Misliti velikost: Od liliputancev do velikanov

Potujemo v zgodovino našega planeta in odkrivamo največja in najmanjša bitja, ki so ga poseljevala. Zagrizemo tudi v iskanje odgovora, kakšen mojstrski kipar je narava, ki se je domislila človeka – ravno prav velikega sesalca z nadpovprečno velikimi možgani.


25.04.2024

Kaj bi Kant porekel o Chat GPT-ju in našem podnebnem ravnanju?

V ponedeljek je minilo 300 let od rojstva Immanuela Kanta, slovitega modreca iz Königsberga, ki je močno zaznamoval filozofijo. Kant velja za prvega sodobnega filozofa, njegovo delo pa presega meje časa in nam še vedno predstavlja prvovrstno oporo pri naslavljanju temeljnih vprašanj o našem obstoju, našem razumevanju in naši odgovornosti.


Stran 1 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov