Predlogi
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Potovanje v času že od vekomaj buri človeško domišljijo. Če bi le lahko odpotovali v preteklost in popravili svoje napake ali pa skočili v prihodnost in si zapisali dobitno številko loterijskega žreba – kako navidezno sanjsko bi lahko bilo življenje časovnega popotnika.
A zdi se, da so to samo pobožne želje, ki jih zakoni časa in prostora v tem vesolju ne dopuščajo. Kolikor vemo, še nikomur ni uspelo zavrteti časa nazaj ali naprej.
Po mnenju slavnega britanskega fizika Stephena Hawkinga je najboljši dokaz za to, da je potovanje v času nemogoče, to, da med nami ni turistov iz prihodnosti. Če bi namreč bilo potovanje v času izvedljivo in bi ga ljudje v prihodnosti odkrili, potem bi morali biti med nami danes popotniki, ki so šli na izlet v preteklost.
A najsi bo ideja o časovnih skokih še tako nemogoča, si fiziki vseeno ne morejo pomagati, da ne bi o njej resno razmišljali in v svojih enačbah iskali skrite predore v preteklost in prihodnost. In tako se v njihovih glavah vsake toliko časa pojavi kakšna ideja o tem, kako bi lahko prelisičili navidezno trdno zacementirane zakone časa in odprli prepovedana vrata v preteklost ali prihodnost.
Prvi, ki je v fizikalnih zakonih našel časovno luknjo, je bil genialni avstrijski matematik Kurt Gödel. Ta je leta 1949 v Einsteinovih enačbah teorije relativnosti odkril, da bi bilo časovno potovanje mogoče, če bi se naše vesolje vrtelo.
Vrtenje vesolja bi namreč ustvarjalo časovne zanke, ki bi odpirale pot v preteklost ali prihodnost. V tem primeru bi bilo celotno vesolje nekakšen časovni stroj. A žal vse dosedanje meritve in raziskave kažejo, da se naše vesolje ne vrti, ampak lepo ždi pri miru, torej Gödelove časovne zanke v tem vesolju najbrž ne obstajajo.
Še bolj zanimiv pa je predlog, ki ga je leta 1988 predstavil ameriški teoretični fizik Kip Thorne. Thorne je predpostavil obstoj t.i. črvin v prostor-času, ki so nekakšen portal v preteklost ali prihodnost. Po mnenju nekaterih znanstvenikov, kot je Stephen Hawking, tovrstne črvine niso samo zanimiva teoretična iznajdba, ampak tudi dejansko obstajajo.
Obstajale naj bi vsepovsod okrog nas, vendar so žal premajhne, da bi jih lahko videli ali zaznali. V podmikroskopskim svetu, še dosti manjšem kot sami atomi, naj bi se črvine nenehno spontano pojavljale in izginjale in za kratke trenutke odpirale vrata v času.
Žal so te črvine velike samo miljardinko-triljoninko triljoninko centimetra, daleč premajhne, da bi lahko skoznje potoval kakšen atom, kaj šele človek. A nekateri znanstveniki verjamejo, da bi nekoč lahko ujeli takšno črvino, jo povečali ter s tem ustvarili pravcati časovni stroj.
Edina težava pri tem je, da bi pri tem potrebovali eksotično materijo z negativno energijo. Do danes še nihče ni videl ali dokazal, da bi takšna nenavadna materija res obstajala, zato časovni stroj iz črvine za zdaj še ostaja v sferi znanstvene-fantastike.
Rotirajoče vesolje in črvine pa niso edina teoretična pot do časovnih skokov. V zadnjih desetletjih so fiziki predlagali še precej drugih scenarijev, ki odpirajo portale v času od t.i. golih črnih lukenj, do asimetrično zvitih membran, ki jih predvideva teorija strun.
Če je namreč verjeti priznanemu nemškemu fiziku Heinrich Päsu, je v primeru, da ima naše vesolje več dimenzij, kot samo običajne štiri, kot napoveduje špekulativna teorija strun, potem je mogoče pod določenimi pogoji preko dodatnih dimenzij tudi potovati v času.
Spet drugi, kot je ruski matematik Igor Volovich, pa pravijo, da smo ljudje mogoče že izdelali prvi časovni stroj. Imenoval naj bi se veliki hadronski trkalnik, ki stoji v švicarskem raziskovalnem središču CERN.
Po Volovichovem mnenju ta največji pospeševalnik delcev na svetu pri silovitem zaletavanju delcev ustvarja tudi časovne luknje, ki osnovne delce pošilja na potovanje v času. Volovich zato verjame, da bi lahko dokaz, da je časovno potovanje mogoče, našli v prihodnjih letih v podzemnih predorih CERN-a.
A kljub vsem obetajočim teoretičnim možnostim časovnega popotovanja, pa še vedno obstaja nekaj velikih fizikalno-filozofskih ovir. Ena od najbolj očitnih je t.i. »paradoks dedka«, ki pravi, da bi lahko časovni popotnik skočil v preteklost in ubil svojega dedka, s čimer bi preprečil svoje rojstvo.
To bi povzročilo paradoks, ki bi ga bilo težko razrešiti, razen če v tej realnosti ne obstajajo vzporedna vesolja ali kaj podobnega. Ta in drugi paradoksi, ki jih povzroča časovno popotovanje, so navedli Stephena Hawkinga v to, da je razglasil t.i. domnevo kronološke zaščite, ki predpostavlja, da je naše vesolje narejeno tako, da potovanje v času v njem ni mogoče.
Odgovor na vprašanje, ali je mogoče potovati v času torej še ni dokončen, zato je zaželeno, da če kdaj srečate kakšnega turista iz prihodnosti, da ga napotite tudi do najbližjega fizika.
———
INTERVJU
Prof. Heinrich Päs s Tehniške univerze v Dortmundu je že bil naš gost v oddaji o tahionih. Je avtor knjige Die perfekte Welle(Popolni val) o nevrtinih, dodatnih dimenzijah in potovanju skozi čas. Prihodnje leto bo v založbi Harvard University Press izšel tudi angleški prevod.
Nazadnje ko sva govorila o eksperimentu OPERA in novici, da tahioni morda potujejo hitreje kot svetloba, ste rekli, da ste vznemirjeni in hkrati skepitični. Podobno jaz razmišljam o potovanju skozi čas. Je to resna znanstvena tema ali bolj domena teoretičnih špekulacij in znanstvene fantastike?
Da, to je res nekoliko eksotična tema, vendar pa se številni znanstveniki z njo vseeno ukvarjajo. To je sicer teoretična špekulacija, ampak je na drugi strani resna. Obstajajo resni znanstveniki, ki svoj čas posvečajo vprašanju, ali je potovanje skozi čas mogoče ali ne. Torej so to resne raziskave, a špekulativne v tem smislu, da rezultatov teh teorij ta trenutek še ni mogoče eksperimentalno preveriti. Kljub temu pa lahko iz teh raziskav že danes poglabljamo svoje razumevanje o samem konceptu časa, Einsteinovi teoriji relativnosti in kvantni gravitaciji.
Katera od teoretičnih idej za potovanje v času je po vašem najbolj obetajoča? So mogoče to t.i. črvine ali pa dodatne dimenzije v teoriji strun?
To je težko presoditi. Dodatne dimenzije niso tako zelo različne od črvin, saj imajo določene lastnosti. Dodatne dimenzije se lahko obnašajo popolnoma krotko in ne dovoljujejo potovanja v času, če pa so zvite na določen način, potem so podobne črvinam in imajo podobne lastnosti. Imajo tudi nekaj prednosti pred črvinami v tem smislu, da za zdaj še nihče ni videl črvine, torej so, če obstajajo, najbrž daleč proč, medtem ko se dodatne dimenzije mogoče skrivajo že za naslednjim vogalom. Prav tako nekateri problemi, ki so povezani s prostorom in časom pri črvinah, kot je potreba po eksotični materiji in energiji, v primeru dodatnih dimenzij niso tako žgoči.
Nam lahko na razumljiv način pojasnite, kako bi bilo mogoče skozi črvine potovati v času?
Torej, v osnovi črvina predstavlja povezavo oziroma bližnjico med dvema točkama v prostoru, ki sta ločeni z veliko razdaljo. Ker v Einsteinovi teoriji posebne relativnosti koncept sočasnosti ni jasno opredeljen, lahko v primeru dveh dogodkov, ki sta ločena z veliko razdaljo v prostoru, obrnemo časovni vrstni red teh dveh dogodkov. Se pravi, če bi skočili v črvino, bi vas oseba, ki bi vas opazovala, videla, da ste iz črvine na drugem koncu iztopili še preden ste skočili notri. Torej bi bilo to resnično potovanje v času, naredili bi krog v prostoru, v času pa bi prispeli, preden ste štartali.
Bi lahko v bližnji prihodnosti tudi dokazali, da je mogoče potovati v času? Nekateri verjamejo, da bi takšne eksperimente naredili v švicarskem CERN-u?
Odvisno je od tega, kako bi lahko ustvarili to zanko v prostoru in času. Če bi bilo to prek dodatne dimenzije, potem bi bilo v pomoč, če bi lahko pripravili delce, ki lahko potujejo v to dodatno dimenzijo. Osebno sem pred časom skupaj s Tomom Weilerjem iz univerze Vanderbilt predlagal, da bi lahko za to uporabili nevtrine, ki bi lahko ubrali bližnjico čez prostor in čas in tako na cilj prispeli, preden so začeli potovanje. Podobno je Tom Weiler predlagal, da bi v Cernu lahko nekako našli način, da bi ustvarili eksotične gostote energije, s katerimi bi upognili prostor inčas in s tem ustvarili časovni stroj. Same črvine bi lahko iskali tudi v vesolju. Torej, odvisno od tega, kakšen časovni stroj iščete, so potem načini, kako jih eksperimentalno testirati. Vsi ti testi so zahtevni in bodo izvedljivi mogoče nekoč v prihodnosti.
Ali verjamete, da bomo ljudje kdaj v prihodnosti lahko končno zgradili časovni stroj? Med drugim bi kaj takšnega vodilo do resnih zapletov, kot je na primer »paradoks dedka«.
V kvantni fiziki obstajajo ideje, da bi lahko realnost zapolnjevali vzporedni svetovi. Pri tem se ob vsakem dogodku zgodijo vse potencialne možnosti, ki se odvijejo sočasno v paralelnih vesoljih. To se sicer sliši zelo eksotično, če pa na to pogledate bolj resno, potem je to najmanj kontradiktorna interpretacija kvantne fizike. Če torej to vzamete resno, potem bi časovni potnik pri skoku v preteklost dejansko pristal v vzporednem vesolju, kjer bi lahko ubil svojega dedka, vendar to nanj ne bi imelo vpliva, saj bi dedek, ki živi v njegovem vesolju, ostal živ. S tem se torej izognemo temu paradoksu. Na drugi strani pa na primer pristopi h kvantni gravitaciji favorizirajo pogled, da sta čas in svobodna volja iluzija in da je vse, kar se zgodi, že določeno, torej se že po definiciji ne more zgoditi nič protislovnega.
694 epizod
Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.
Potovanje v času že od vekomaj buri človeško domišljijo. Če bi le lahko odpotovali v preteklost in popravili svoje napake ali pa skočili v prihodnost in si zapisali dobitno številko loterijskega žreba – kako navidezno sanjsko bi lahko bilo življenje časovnega popotnika.
A zdi se, da so to samo pobožne želje, ki jih zakoni časa in prostora v tem vesolju ne dopuščajo. Kolikor vemo, še nikomur ni uspelo zavrteti časa nazaj ali naprej.
Po mnenju slavnega britanskega fizika Stephena Hawkinga je najboljši dokaz za to, da je potovanje v času nemogoče, to, da med nami ni turistov iz prihodnosti. Če bi namreč bilo potovanje v času izvedljivo in bi ga ljudje v prihodnosti odkrili, potem bi morali biti med nami danes popotniki, ki so šli na izlet v preteklost.
A najsi bo ideja o časovnih skokih še tako nemogoča, si fiziki vseeno ne morejo pomagati, da ne bi o njej resno razmišljali in v svojih enačbah iskali skrite predore v preteklost in prihodnost. In tako se v njihovih glavah vsake toliko časa pojavi kakšna ideja o tem, kako bi lahko prelisičili navidezno trdno zacementirane zakone časa in odprli prepovedana vrata v preteklost ali prihodnost.
Prvi, ki je v fizikalnih zakonih našel časovno luknjo, je bil genialni avstrijski matematik Kurt Gödel. Ta je leta 1949 v Einsteinovih enačbah teorije relativnosti odkril, da bi bilo časovno potovanje mogoče, če bi se naše vesolje vrtelo.
Vrtenje vesolja bi namreč ustvarjalo časovne zanke, ki bi odpirale pot v preteklost ali prihodnost. V tem primeru bi bilo celotno vesolje nekakšen časovni stroj. A žal vse dosedanje meritve in raziskave kažejo, da se naše vesolje ne vrti, ampak lepo ždi pri miru, torej Gödelove časovne zanke v tem vesolju najbrž ne obstajajo.
Še bolj zanimiv pa je predlog, ki ga je leta 1988 predstavil ameriški teoretični fizik Kip Thorne. Thorne je predpostavil obstoj t.i. črvin v prostor-času, ki so nekakšen portal v preteklost ali prihodnost. Po mnenju nekaterih znanstvenikov, kot je Stephen Hawking, tovrstne črvine niso samo zanimiva teoretična iznajdba, ampak tudi dejansko obstajajo.
Obstajale naj bi vsepovsod okrog nas, vendar so žal premajhne, da bi jih lahko videli ali zaznali. V podmikroskopskim svetu, še dosti manjšem kot sami atomi, naj bi se črvine nenehno spontano pojavljale in izginjale in za kratke trenutke odpirale vrata v času.
Žal so te črvine velike samo miljardinko-triljoninko triljoninko centimetra, daleč premajhne, da bi lahko skoznje potoval kakšen atom, kaj šele človek. A nekateri znanstveniki verjamejo, da bi nekoč lahko ujeli takšno črvino, jo povečali ter s tem ustvarili pravcati časovni stroj.
Edina težava pri tem je, da bi pri tem potrebovali eksotično materijo z negativno energijo. Do danes še nihče ni videl ali dokazal, da bi takšna nenavadna materija res obstajala, zato časovni stroj iz črvine za zdaj še ostaja v sferi znanstvene-fantastike.
Rotirajoče vesolje in črvine pa niso edina teoretična pot do časovnih skokov. V zadnjih desetletjih so fiziki predlagali še precej drugih scenarijev, ki odpirajo portale v času od t.i. golih črnih lukenj, do asimetrično zvitih membran, ki jih predvideva teorija strun.
Če je namreč verjeti priznanemu nemškemu fiziku Heinrich Päsu, je v primeru, da ima naše vesolje več dimenzij, kot samo običajne štiri, kot napoveduje špekulativna teorija strun, potem je mogoče pod določenimi pogoji preko dodatnih dimenzij tudi potovati v času.
Spet drugi, kot je ruski matematik Igor Volovich, pa pravijo, da smo ljudje mogoče že izdelali prvi časovni stroj. Imenoval naj bi se veliki hadronski trkalnik, ki stoji v švicarskem raziskovalnem središču CERN.
Po Volovichovem mnenju ta največji pospeševalnik delcev na svetu pri silovitem zaletavanju delcev ustvarja tudi časovne luknje, ki osnovne delce pošilja na potovanje v času. Volovich zato verjame, da bi lahko dokaz, da je časovno potovanje mogoče, našli v prihodnjih letih v podzemnih predorih CERN-a.
A kljub vsem obetajočim teoretičnim možnostim časovnega popotovanja, pa še vedno obstaja nekaj velikih fizikalno-filozofskih ovir. Ena od najbolj očitnih je t.i. »paradoks dedka«, ki pravi, da bi lahko časovni popotnik skočil v preteklost in ubil svojega dedka, s čimer bi preprečil svoje rojstvo.
To bi povzročilo paradoks, ki bi ga bilo težko razrešiti, razen če v tej realnosti ne obstajajo vzporedna vesolja ali kaj podobnega. Ta in drugi paradoksi, ki jih povzroča časovno popotovanje, so navedli Stephena Hawkinga v to, da je razglasil t.i. domnevo kronološke zaščite, ki predpostavlja, da je naše vesolje narejeno tako, da potovanje v času v njem ni mogoče.
Odgovor na vprašanje, ali je mogoče potovati v času torej še ni dokončen, zato je zaželeno, da če kdaj srečate kakšnega turista iz prihodnosti, da ga napotite tudi do najbližjega fizika.
———
INTERVJU
Prof. Heinrich Päs s Tehniške univerze v Dortmundu je že bil naš gost v oddaji o tahionih. Je avtor knjige Die perfekte Welle(Popolni val) o nevrtinih, dodatnih dimenzijah in potovanju skozi čas. Prihodnje leto bo v založbi Harvard University Press izšel tudi angleški prevod.
Nazadnje ko sva govorila o eksperimentu OPERA in novici, da tahioni morda potujejo hitreje kot svetloba, ste rekli, da ste vznemirjeni in hkrati skepitični. Podobno jaz razmišljam o potovanju skozi čas. Je to resna znanstvena tema ali bolj domena teoretičnih špekulacij in znanstvene fantastike?
Da, to je res nekoliko eksotična tema, vendar pa se številni znanstveniki z njo vseeno ukvarjajo. To je sicer teoretična špekulacija, ampak je na drugi strani resna. Obstajajo resni znanstveniki, ki svoj čas posvečajo vprašanju, ali je potovanje skozi čas mogoče ali ne. Torej so to resne raziskave, a špekulativne v tem smislu, da rezultatov teh teorij ta trenutek še ni mogoče eksperimentalno preveriti. Kljub temu pa lahko iz teh raziskav že danes poglabljamo svoje razumevanje o samem konceptu časa, Einsteinovi teoriji relativnosti in kvantni gravitaciji.
Katera od teoretičnih idej za potovanje v času je po vašem najbolj obetajoča? So mogoče to t.i. črvine ali pa dodatne dimenzije v teoriji strun?
To je težko presoditi. Dodatne dimenzije niso tako zelo različne od črvin, saj imajo določene lastnosti. Dodatne dimenzije se lahko obnašajo popolnoma krotko in ne dovoljujejo potovanja v času, če pa so zvite na določen način, potem so podobne črvinam in imajo podobne lastnosti. Imajo tudi nekaj prednosti pred črvinami v tem smislu, da za zdaj še nihče ni videl črvine, torej so, če obstajajo, najbrž daleč proč, medtem ko se dodatne dimenzije mogoče skrivajo že za naslednjim vogalom. Prav tako nekateri problemi, ki so povezani s prostorom in časom pri črvinah, kot je potreba po eksotični materiji in energiji, v primeru dodatnih dimenzij niso tako žgoči.
Nam lahko na razumljiv način pojasnite, kako bi bilo mogoče skozi črvine potovati v času?
Torej, v osnovi črvina predstavlja povezavo oziroma bližnjico med dvema točkama v prostoru, ki sta ločeni z veliko razdaljo. Ker v Einsteinovi teoriji posebne relativnosti koncept sočasnosti ni jasno opredeljen, lahko v primeru dveh dogodkov, ki sta ločena z veliko razdaljo v prostoru, obrnemo časovni vrstni red teh dveh dogodkov. Se pravi, če bi skočili v črvino, bi vas oseba, ki bi vas opazovala, videla, da ste iz črvine na drugem koncu iztopili še preden ste skočili notri. Torej bi bilo to resnično potovanje v času, naredili bi krog v prostoru, v času pa bi prispeli, preden ste štartali.
Bi lahko v bližnji prihodnosti tudi dokazali, da je mogoče potovati v času? Nekateri verjamejo, da bi takšne eksperimente naredili v švicarskem CERN-u?
Odvisno je od tega, kako bi lahko ustvarili to zanko v prostoru in času. Če bi bilo to prek dodatne dimenzije, potem bi bilo v pomoč, če bi lahko pripravili delce, ki lahko potujejo v to dodatno dimenzijo. Osebno sem pred časom skupaj s Tomom Weilerjem iz univerze Vanderbilt predlagal, da bi lahko za to uporabili nevtrine, ki bi lahko ubrali bližnjico čez prostor in čas in tako na cilj prispeli, preden so začeli potovanje. Podobno je Tom Weiler predlagal, da bi v Cernu lahko nekako našli način, da bi ustvarili eksotične gostote energije, s katerimi bi upognili prostor inčas in s tem ustvarili časovni stroj. Same črvine bi lahko iskali tudi v vesolju. Torej, odvisno od tega, kakšen časovni stroj iščete, so potem načini, kako jih eksperimentalno testirati. Vsi ti testi so zahtevni in bodo izvedljivi mogoče nekoč v prihodnosti.
Ali verjamete, da bomo ljudje kdaj v prihodnosti lahko končno zgradili časovni stroj? Med drugim bi kaj takšnega vodilo do resnih zapletov, kot je na primer »paradoks dedka«.
V kvantni fiziki obstajajo ideje, da bi lahko realnost zapolnjevali vzporedni svetovi. Pri tem se ob vsakem dogodku zgodijo vse potencialne možnosti, ki se odvijejo sočasno v paralelnih vesoljih. To se sicer sliši zelo eksotično, če pa na to pogledate bolj resno, potem je to najmanj kontradiktorna interpretacija kvantne fizike. Če torej to vzamete resno, potem bi časovni potnik pri skoku v preteklost dejansko pristal v vzporednem vesolju, kjer bi lahko ubil svojega dedka, vendar to nanj ne bi imelo vpliva, saj bi dedek, ki živi v njegovem vesolju, ostal živ. S tem se torej izognemo temu paradoksu. Na drugi strani pa na primer pristopi h kvantni gravitaciji favorizirajo pogled, da sta čas in svobodna volja iluzija in da je vse, kar se zgodi, že določeno, torej se že po definiciji ne more zgoditi nič protislovnega.
Leta 2008 so v neki Sibirski jami odkrili ostanke človečnjakov, ki so sobivali z neandertalci in se pomešali v našo vrsto. Poimenovali so jih po jami. Zdaj so to – Denisovani. Ko je predhodnik človeka zapustil Afriko, so na Zemlji tako živele vsaj štiri vrste človečnjakov. Kaj pomeni odkritje nove vrste, bo razložil dr. Bence Viola z Inštituta Maxa Plancka.
Izbruhi žarkov gama se - gledano statistično - pojavljajo enkrat na dan, verjetnost, da bi se zgodili v naši galaksiji, pa je precej majhna, kar je dobro, saj bi tako močna eksplozija relativno blizu nas lahko poškodovala zgornje plasti atmosfere in uničila ozonsko plast, kar bi gotovo negativno vplivalo na življenje na Zemlji. Gre za najmočnejše eksplozije v vesolju po velikem poku. Teh spektakularnih dogodkov pred dvajsetimi leti niti približno nismo razumeli, zdaj pa se slika sestavlja. Nov pogled v območje nastanka izbruhov in na razumevanje, kaj se dogaja v samem izvoru izbruha sevanja gama, je odkrila raziskava, pri kateri sodeluje tudi mladi astrofizik dr. Drejc Kopač, gost tokratne Frekvence X.
Nate Silver, ameriški statistik in novinar, ki je zaslovel z zelo natančnimi napovedmi izidov volitev v Združenih državah Amerike, je opozoril na pomembno razlikovanje med tveganjem in negotovostjo. Z besedo tveganje opiše okoliščine, pri katerih lahko ocenimo zanesljivost napovedi oziroma pričakovano napako izračunov ali meritev, ki smo jih opravili, medtem ko z besedo negotovost označi obravnavo dogodkov, pri katerih nimamo nobene opore, da bi lahko predvideli napako njihove napovedi oziroma možno odstopanje od vrednosti, ki se bo dejansko realizirala.
Nate Silver, ameriški statistik in novinar, ki je zaslovel z zelo natančnimi napovedmi izidov volitev v Združenih državah Amerike, je opozoril na pomembno razlikovanje med tveganjem in negotovostjo. Z besedo tveganje opiše okoliščine, pri katerih lahko ocenimo zanesljivost napovedi oziroma pričakovano napako izračunov ali meritev, ki smo jih opravili, medtem ko z besedo negotovost označi obravnavo dogodkov, pri katerih nimamo nobene opore, da bi lahko predvideli napako njihove napovedi oziroma možno odstopanje od vrednosti, ki se bo dejansko realizirala.
Prvomajska Frekvenca X je nekoliko drugačna. Pogovarjali smo se s štirimi znanstveniki z različnih raziskovalnih področij o tem, kakšen je njihov delavnik in kako sami pojmujejo delo. Programer, sociologinja, kemik in upokojeni profesor fizike. Kot pravijo, delo med znanstveniki še zdaleč ni le fizikalna količina. Vse po vrsti pa do dela v znanosti združuje velika strast, zaradi česar lahko postanejo prebedene noči pogost sopotnik.
V reviji Science je pred dvema tednoma izšel članek znanstvenikov iz Odseka za kompleksne snovi Instituta Jožef Stefan, v katerem so ti poročali o odkritju “skritega” kvantnega stanja. Do njega so se dokopali z močnim in izjemno kratkim laserskim sunkom, dolgim le tretjino milijoninke milijardinke sekunde. Odkritje je zelo pomembno, saj je prvi primer stabilnega skritega stanja v naravi nasploh. Je torej dokaz, da so tovrstna stanja mogoča, odpira pa tudi raziskave skritih stanj v različnih sistemih, vse od vzporednega vesolja do novih elementarnih delcev in novih oblik kondenziranega materije.
Večno življenje ali vsaj daljši odlog smrti je želja marsikoga. Tako močna, da so se nekateri pripravljeni celo zamrzniti v upanju, da jih bo znanost v prihodnosti lahko obudila nazaj v življenje. Dobrodošli v znanost krionike, ki je še vedno močno odvisna od špekulativnih tehnologij prihodnosti, ki lahko, da jih bodo izumili ali pa tudi ne. Kakšna je prihodnost tega na prvi pogled morda celo strašljivega koncepta? Naš gost je eden največjih poznavalcev krionike Ben Best, ki se je že pred dvajsetimi leti odločil za zamrznitev.
Tokrat znova zremo v nebo, od koder izvirajo radijski valovi, ki drugače kot valovi, prek katerih nas poslušate, prihajajo iz vesolja. Pogovarjali smo se z Michaelom Garrettom, profesorjem radioastronomije na Univerzi v Leidnu in direktorjem nizozemskega instituta za radijsko astronomijo ASTRON.
Številne raziskave zadnja leta dokazujejo, da se moški in ženske ne razlikujemo le v obliki in delovanju spolnih organov, temveč so razlike veliko večje in jih lahko najdemo skoraj v vseh tkivih in organih v našem telesu, tudi v delovanju jeter. Gre za organ, ki je zelo pomemben pri zaščiti našega organizma, pri odstranjevanju vsega, kar lahko v našem telesu deluje kot strup. Naše telo kot taka prepoznava tudi vsa zdravila, ki jih jemljemo in jih iz organizma odstranjujejo prav naša jetra. Koliko je za današnjo medicino pomembno spoznanje, da tudi zdravila prepoznavajo spol, med drugim sprašujemo prof.dr. Gregorja Majdiča, ki je bil gost tokratne oddaje Frekvenca X.
Znanstveniki pogosto opozarjajo, da utegne zdravljenje z antibiotiki postati neučinkovito. Medicina zato zavzeto išče nove oblike zdravljenja in ena izmed bolj obetavnih priložnosti je uporaba bakteriofagov – ali krajše fagov. To so virusi, ki napadajo izključno bakterije. Zamisel o zdravljenju je stara, kontroverznost antibiotikov pa jo je ponovno ponesla na piedestal znanosti. Gostja oddaje je profesorica Elizabeth Kutter, vodja laboratorija na Evergreen State College v Olympiji. Foto: Sanofi Pasteur
Znanstveniki pogosto opozarjajo, da utegne zdravljenje z antibiotiki postati neučinkovito. Medicina zato zavzeto išče nove oblike zdravljenja in ena izmed bolj obetavnih priložnosti je uporaba bakteriofagov – ali krajše fagov. To so virusi, ki napadajo izključno bakterije. Zamisel o zdravljenju je stara, kontroverznost antibiotikov pa jo je ponovno ponesla na piedestal znanosti. Gostja oddaje je profesorica Elizabeth Kutter, vodja laboratorija na Evergreen State College v Olympiji. Foto: Sanofi Pasteur
V četrtkovi Frekvenci X gremo za spremembo v malo bolj filozofske vode, in sicer v Haag mrzlega in vetrovnega novembra leta 1676. Skoraj v popolni tajnosti je takrat na vrata kontroverznega filozofa Barucha /baruha/ de Spinoze oziroma ateističnega Žida, kot so ga klicali, potrkal dobro desetletje mlajši Wilhelm Gottfried Leibniz, ki je veljal za enega izmed največjih genijev tistega časa. O srečanju najnevarnejšega in najslavnejšega misleca sveta in o tem, kako je to zamajalo poznejše miselne nastavke, se bomo pogovarjali z ameriškim filozofom Matthewom Stewartom.
Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.
Leto 2014 je mednarodno leto kristalografije. Sogovorniki: profesor Gautam Desiraju, nobelov nagrajenec Dan Schechtman in dr. Ivan Leban.
Voyager 1 in 2 sta najbolj znani vesoljski sondi, ki na Zemljo pošiljata številne zanimive podatke. Švicarski fizik in skladatelj Domenico Vicinanza je s pomočjo posebne tehnologije podatke iz vesolja uglasbil in ustvaril zanimiv vesoljski duet.
Ključne besede današnje Frekvence X, ki nas vsak četrtek popelje med vznemirljiva vprašanja in odkritja moderne znanosti, so računalniška kemija, mikrovalovno sevanje in rak.
Dr. Ben Goldacre je prodoren britanski zdravnik in epidemiolog ter avtor knjige Slaba znanost. V Frekvenci X se z njim pogovarjamo o cepivih, ki so dokazano izkoreninila marsikatero za človeka pogubno bolezen. Goldacre nasprotuje kakršni koli prisili zdravljenja, tudi obveznemu cepljenju, opozarja pa na škodo, ki jo z neutemeljenim strašenjem povzročajo nasprotniki cepljenja. Po njegovem mnenju je žalostno, da se starši ne odločajo za cepljenje, saj s tem ogrožajo svoje in otroke drugih staršev.
Pred pol stoletja smo že vedeli, da je vesolje posuto z galaksijami, to je ogromnimi skupinami zvezd, kot je naša Rimska cesta. Tedaj pa so odkrili novo vrsto teles, najsvetlejše med njimi so imenovali kvazarji. V njihovem središču ždi črna luknja z ogromno maso, območje pa je videti zelo svetlo, ker vidimo divje sevanje okoliškega plina, ki pada vanjo. Razvoj teh raziskav je ves čas spremljal gost tokratne Frekvence X, profesor Jack Sulentic, ki je vodilni raziskovalec aktivnih jeder galaksij na svetu.
Gostili smo profesorja dr. Petra Jennija, dolgoletnega vodjo, pravzaprav kar “očeta” eksperimenta Atlas. V njem sodelujejo tudi slovenski znanstveniki. Skupina je posebej omenjena tudi v obrazložitvi lanske Nobelove nagrade za fiziko. Jenni je pomembno povezan s slovenskimi fiziki, saj jih je prav on povabil k sodelovanju v Atlasu.
Gostili smo profesorja dr. Petra Jennija, dolgoletnega vodjo, pravzaprav kar “očeta” eksperimenta Atlas. V njem sodelujejo tudi slovenski znanstveniki. Skupina je posebej omenjena tudi v obrazložitvi lanske Nobelove nagrade za fiziko. Jenni je pomembno povezan s slovenskimi fiziki, saj jih je prav on povabil k sodelovanju v Atlasu.
Neveljaven email naslov