Predlogi
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Zvezde, katerih masa ne presega treh četrtin mase Sonca živijo zelo dolgo, pravzaprav so še vedno tu, celo če so nastale, ko je bilo vesolje še mlado. O nedavnem odkritju posebne zvezde z majhno maso, smo se pogovarjali s profesorjem Paolom Molarom z Astronomskega observatorija v Trstu.
Profesor Molaro, v nedavnem članku v reviji Nature ste opisali odkritje zvezde z majhno maso, ki mora biti zelo stara, saj ima 20 000-krat manjši delež prvin, težjih od helija, kot naše Sonce. Kaj to pomeni za naše razumevanje nastanka prvih zvezd v vesolju?
Vesolje je prve tri minute po velikem poku sestavljajo le nekaj prvin: helij in devterij, ki je vodikov izotop, ter sledovi litija. Vse druge prvine so nastale pozneje v zvezdah. Če naletimo na zvezde z majhno vsebnostjo kovin, vemo, da so zelo stare. To so zelo zanimive zvezde, saj naj bi bile prve zvezde nekaj posebnega. Bile so zelo velike, z maso enako masi milijona Sonc. Ker so bile tako velike, so imele kratko življenjsko dobo in so do danes že vse izginile. Njihove ostanke verjetno lahko najdemo samo še kot črne luknje. Naše odkritje zvezde z majhno vsebnostjo kovin v plinu pomeni, da je bila naša predstava o prvih zvezdah preveč poenostavljena. Iz plina s prvobitno sestavo so tako že nastajale zvezde z majhno maso. Ravno zaradi majhne mase imajo dolgo življenjsko dobo, ki je primerljiva s starostjo vesolja, zato jih lahko opazujemo še danes.
V naši galaksiji je veliko zvezd z majhno maso. Ali raziskava odpira možnosti, da bomo odkrili še druge zelo stare zvezde in izvedeli kaj več o kemiji zgodnjega vesolja?
Da. V naši galaksiji je več milijard zvezd. Toda zvezde, kakršno smo odkrili, so zelo redke. Preučiti smo morali skoraj 200 000 zvezd, da smo našli možno kandidatko za tako zvezdo. Ker vesolje ni povsod enako, smo potem odkrili še druge. Zlasti zdaj je laže, ko smo našli metodo za razločevanje teh zvezd od drugih. Te zvezde odpirajo novo okno za opazovanje vesolja, ko je bilo še zelo mlado. Nimamo namreč veliko možnosti za raziskovanje zgodnjega vesolja: kako so nastali prvi kemijski elementi, kakšne so bile zvezde, kako so potekali procesi tvorjenja jeder.
Profesor Molaro, meritve, ki ste jih opisali, zahtevajo izjemno natančno opremo. Sodelujete pri načrtovanju merilnikov, ki bodo lahko izmerili hitrost nekaj centimetrov na sekundo za telesa, oddaljena tisoče ali milijone svetlobnih let. Kje potrebujemo tako natančno opremo?
Sprememba osnovnih konstant bi pomenila spremembo strukture atomov. Ker je atomsko strukturo mogoče razbrati iz svetlobnega spektra, bi spremembo zaznali kot majhen premik sevalnih črt ali radialne hitrosti. Zato potrebujemo natančne spektrometre, s katerimi bi lahko merili zelo majhne spremembe radialne hitrosti. Težava je, da tako natančnih merilnikov še nimamo. Zdaj se ukvarjamo z novim spektrometrom, ki bo vgrajen v zelo velik teleskop v Čilu. Poimenovali smo ga espreso – kot kavo. V angleščini je to približna kratica za spektrometer za kamnite eksoplanete in stabilna spektroskopska opazovanja. Zelo zapleteno ime. Z njim bo mogoče zaznati zelo majhne radialne hitrosti. Uporabljali ga bomo tudi za iskanje novih planetov, podobnih Zemlji, ki krožijo okoli drugih zvezd. To bo najboljši spektrometer. Povezan bo s štirimi teleskopi, od katerih bo imel vsak premer osem metrov. Ko bo začel delovati, bo najboljši spektrometer na največjem teleskopu na svetu. Upam, da bo v uporabi okoli leta 2015.
Govorila sva o nekaterih nedavnih odkritjih. Toda astronomija je starodavna znanost, ki je v sodobne čase stopila z iznajdbo teleskopa pred 400 leti. Nedavno ste objavili, da nekatere slike Jana Brueghela starejšega morda prikazujejo teleskop, ki je morda navdihnil Galileja. Ta je namreč teleskop prvi usmeril v nebo. Kaj se lahko naučimo iz teh novih ugotovitev?
To je bila zgodovinska študija, ki sem jo delal leta 2009, ko je bilo mednarodno leto astronomije in smo praznovali 400 let uporabe teleskopa za astronomska opazovanja, s čimer je začel Galilej. To je odprlo nova področja v astronomiji in znanosti. Kljub temu da je minilo 400 let, še vedno ne vemo, kdo je iznašel teleskop in kako se je prva leta razvijal. Poznamo Galileja, o drugih pa ne vemo veliko. Ko sem raziskoval zgodovino, sem naletel na prvo sliko teleskopa, ki jo je naslikal Jan Brueghel starejši. Slika je zdaj v Muzeju lepih umetnosti v Richmondu v Virginiji v ZDA. Na sliki je upodobljen Albert VII., kako gleda skozi teleskop, velik približno30 centimetrov. Med zgodovinskimi raziskavami smo našli nekaj dokumentov, ki so pričali o tem, da je Albert VII. teleskope dobival neposredno od izumitelja. Takih dokazov je pet ali šest. Teleskop na sliki Jana Brueghela starejšega ni le prvi upodobljeni teleskop, ampak ga je verjetno izdelal sam iznajditelj teleskopa. Kandidatov je več, vendar ne vemo, kateri je pravi.
694 epizod
Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.
Zvezde, katerih masa ne presega treh četrtin mase Sonca živijo zelo dolgo, pravzaprav so še vedno tu, celo če so nastale, ko je bilo vesolje še mlado. O nedavnem odkritju posebne zvezde z majhno maso, smo se pogovarjali s profesorjem Paolom Molarom z Astronomskega observatorija v Trstu.
Profesor Molaro, v nedavnem članku v reviji Nature ste opisali odkritje zvezde z majhno maso, ki mora biti zelo stara, saj ima 20 000-krat manjši delež prvin, težjih od helija, kot naše Sonce. Kaj to pomeni za naše razumevanje nastanka prvih zvezd v vesolju?
Vesolje je prve tri minute po velikem poku sestavljajo le nekaj prvin: helij in devterij, ki je vodikov izotop, ter sledovi litija. Vse druge prvine so nastale pozneje v zvezdah. Če naletimo na zvezde z majhno vsebnostjo kovin, vemo, da so zelo stare. To so zelo zanimive zvezde, saj naj bi bile prve zvezde nekaj posebnega. Bile so zelo velike, z maso enako masi milijona Sonc. Ker so bile tako velike, so imele kratko življenjsko dobo in so do danes že vse izginile. Njihove ostanke verjetno lahko najdemo samo še kot črne luknje. Naše odkritje zvezde z majhno vsebnostjo kovin v plinu pomeni, da je bila naša predstava o prvih zvezdah preveč poenostavljena. Iz plina s prvobitno sestavo so tako že nastajale zvezde z majhno maso. Ravno zaradi majhne mase imajo dolgo življenjsko dobo, ki je primerljiva s starostjo vesolja, zato jih lahko opazujemo še danes.
V naši galaksiji je veliko zvezd z majhno maso. Ali raziskava odpira možnosti, da bomo odkrili še druge zelo stare zvezde in izvedeli kaj več o kemiji zgodnjega vesolja?
Da. V naši galaksiji je več milijard zvezd. Toda zvezde, kakršno smo odkrili, so zelo redke. Preučiti smo morali skoraj 200 000 zvezd, da smo našli možno kandidatko za tako zvezdo. Ker vesolje ni povsod enako, smo potem odkrili še druge. Zlasti zdaj je laže, ko smo našli metodo za razločevanje teh zvezd od drugih. Te zvezde odpirajo novo okno za opazovanje vesolja, ko je bilo še zelo mlado. Nimamo namreč veliko možnosti za raziskovanje zgodnjega vesolja: kako so nastali prvi kemijski elementi, kakšne so bile zvezde, kako so potekali procesi tvorjenja jeder.
Profesor Molaro, meritve, ki ste jih opisali, zahtevajo izjemno natančno opremo. Sodelujete pri načrtovanju merilnikov, ki bodo lahko izmerili hitrost nekaj centimetrov na sekundo za telesa, oddaljena tisoče ali milijone svetlobnih let. Kje potrebujemo tako natančno opremo?
Sprememba osnovnih konstant bi pomenila spremembo strukture atomov. Ker je atomsko strukturo mogoče razbrati iz svetlobnega spektra, bi spremembo zaznali kot majhen premik sevalnih črt ali radialne hitrosti. Zato potrebujemo natančne spektrometre, s katerimi bi lahko merili zelo majhne spremembe radialne hitrosti. Težava je, da tako natančnih merilnikov še nimamo. Zdaj se ukvarjamo z novim spektrometrom, ki bo vgrajen v zelo velik teleskop v Čilu. Poimenovali smo ga espreso – kot kavo. V angleščini je to približna kratica za spektrometer za kamnite eksoplanete in stabilna spektroskopska opazovanja. Zelo zapleteno ime. Z njim bo mogoče zaznati zelo majhne radialne hitrosti. Uporabljali ga bomo tudi za iskanje novih planetov, podobnih Zemlji, ki krožijo okoli drugih zvezd. To bo najboljši spektrometer. Povezan bo s štirimi teleskopi, od katerih bo imel vsak premer osem metrov. Ko bo začel delovati, bo najboljši spektrometer na največjem teleskopu na svetu. Upam, da bo v uporabi okoli leta 2015.
Govorila sva o nekaterih nedavnih odkritjih. Toda astronomija je starodavna znanost, ki je v sodobne čase stopila z iznajdbo teleskopa pred 400 leti. Nedavno ste objavili, da nekatere slike Jana Brueghela starejšega morda prikazujejo teleskop, ki je morda navdihnil Galileja. Ta je namreč teleskop prvi usmeril v nebo. Kaj se lahko naučimo iz teh novih ugotovitev?
To je bila zgodovinska študija, ki sem jo delal leta 2009, ko je bilo mednarodno leto astronomije in smo praznovali 400 let uporabe teleskopa za astronomska opazovanja, s čimer je začel Galilej. To je odprlo nova področja v astronomiji in znanosti. Kljub temu da je minilo 400 let, še vedno ne vemo, kdo je iznašel teleskop in kako se je prva leta razvijal. Poznamo Galileja, o drugih pa ne vemo veliko. Ko sem raziskoval zgodovino, sem naletel na prvo sliko teleskopa, ki jo je naslikal Jan Brueghel starejši. Slika je zdaj v Muzeju lepih umetnosti v Richmondu v Virginiji v ZDA. Na sliki je upodobljen Albert VII., kako gleda skozi teleskop, velik približno30 centimetrov. Med zgodovinskimi raziskavami smo našli nekaj dokumentov, ki so pričali o tem, da je Albert VII. teleskope dobival neposredno od izumitelja. Takih dokazov je pet ali šest. Teleskop na sliki Jana Brueghela starejšega ni le prvi upodobljeni teleskop, ampak ga je verjetno izdelal sam iznajditelj teleskopa. Kandidatov je več, vendar ne vemo, kateri je pravi.
Scenarij za leto 2050 je lahko tudi takšen: vsi imamo modre oči in smo svetlolasi. V laboratorijih poleg elitnih posameznikov vzgajamo tudi organe, ki nam jih v telo uspešno presadijo roboti. Ti seveda za nas skrbijo v domovih za ostarele, kjer slavimo 100-letnico, ali pa smo morda že celo nesmrtni. Realnost ali fikcija? V Ordinaciji doktorice Prihodnost raziskujemo realne in futuristične možnosti za razmah medicine. V prvi epizodi spoznavamo izzive sodobne kirurgije. V Celju smo sodelovali pri robotski operaciji, se v Ljubljani srečali z ustvarjalcem nosov iz obstoječih tkiv ter se pogovarjali z nemškim zdravnikom, ki raziskuje možnosti presaditve živalskih organov v človeka. Sogovorniki: - Sandi Poteko, urolog, ki je izvedel že dva tisoč robotskih operacij - Dr. Uroš Ahčan, kirurg, ki je ustvaril nov nos iz kosti in mehkih tkiv - Dr. Bruno Reichart, srčni kirurg, ki je prvi v Nemčiji opravil presaditev srca - Prof. dr. Zvonka Zupanič Slavec, predstojnica Inštituta za zgodovino medicine Avtorica serije Ordinacija dr. Prihodnost je Maja Stepančič
V letu 2018 je človek drzno posegel na področja, kjer ni bil še nikoli … Od prelomne misije na Sonce do prvih gensko spremenjenih otrok, od naravnost neverjetnih korakov v medicini do razvozlane skrivnosti svetlobe. Otresli smo se prakilograma, odkrili tekočo vodo na Marsu in bili plat zvona za okolje. Trije novinarji, trije pogledi … in ena znanost 2018! Znanstveno leto 2018 komentirajo Maja Ratej, Jan Grilc in Aljoša Masten.
Italijanski fizik in eden od najbolje prodajanih avtorjev na svetu Carlo Rovelli ponuja nov most med teorijo relativosti in kvantno mehaniko.
Znanost je povsod. Tudi med prazniki. Zato poljudno-znanstvena ekipa Frekvence X tokratni podkast ustvarja ob popoldanskem čaju. V kuhinji pečemo praznične piškote in se čudimo, kako je vse skupaj ena sama velika kemijska reakcija, kjer odločilno vlogo igrajo temperatura in sestavine. In kakšna je vloga glutena? Med zavijanjem daril razmišljamo, kako velik psihološki učinek lahko ima lepo zavita škatla. Pomembnost okusno zavitega darila potrjujejo tudi raziskave. Ob pogledu na božično drevo pa prebiramo raziskave o genetiki novoletnih jelk in možnostih za njihovo kloniranje.
16. novembra letos so se članice mednarodnega urada za uteži in mere, tudi Slovenija, zbrale v Versaillesu na posebni misiji: spremeniti definicijo kilograma. Ta je bila namreč edina enota, ki je še slonela na fizičnem predmetu. V dobi, ko smo z eno nogo tako rekoč že skoraj stopili na Mars, je glavnina vseh naših meritev odvisna od nekega arhaičnega artefakta. Za marsikoga je bilo to absurdno. A najti novo pot do kilograma ni bilo niti najmanj enostavno – potrebna so bila desetletja dela in dve Nobelovi nagradi, da se bomo lahko z majem drugo leto vendarle poslovili od prakilograma. Pri vsej zgodbi, katere pisci sicer zatrjujejo, da se za nas ne bo nič spremenilo, pa nas vendarle najbolj zanima – nam bodo tehtnice morebiti pokazale kaj manj? Merski sistem se je končno osvobodil zemeljskih spon, saj bodo vse enote določene s fizikalno realnostjo, ne z nekimi predmeti, ki slučajno ležijo na majhnem vlažnem planetu, ki kroži okrog sila povprečne zvezde v odročnem rokavu ene izmed običajnih galaksij. Sogovornika: Dr. Gregor Geršak, Fakulteta za elektrotehniko v Ljubljani Goran Grgić, Urad RS za meroslovje Avtorji: Maja Ratej, dr. Matej Huš, Luka Hvalc
Vse bolj jasno postaja, da volivci Donalda Trumpa in vseh trumpov po svetu nikakor niso zavedeni, ampak se zelo dobro zavedajo, koga volijo in zakaj. Volilno podporo na prvi vtis ekscentričnim kandidatom, lahko primerjamo z metanjem granitnih kock v simbole oblasti. Gre za upor tako imenovanih poražencev globalizacije. Razmah populizma v ZDA in Evropi je svojevrsten upor proti različnim elitam. Dejstvo je, da živimo v negotovih časih, a vseeno: smo preveč optimistični, če mislimo, da je populizem vendarle že dosegel vrhunec in se bo umiril? Zakaj torej v vsaj statistično dobrih gospodarskih razmerah uspevajo Trump in trumpi? Kaj v resnici predstavlja brexit? Zakaj je bil zaradi protesta rumenih jopičev prisiljen popustiti francoski predsednik Emanuell Macron? Analizirata: -Politolog in politični analitik Ian Bremmer, Eurasia Group -Filozofinja dr. Alenka Zupančič, ZRC SAZU Avtorja: dr. Sašo Dolenc in Luka Hvalc
Pred skoraj petdesetimi leti – natančneje 24. decembra 1968 – je v vesolju nastala ena najvplivnejših fotografij Zemlje preteklega stoletja. Astronavti na Apollu 8 Frank Borman, Jim Lovell in Bill Anders so iz lunine orbite dobili čudovit posnetek Zemljine oble, ki ni pokazala samo to, kako krasen in svetel je ta modri marmorni planet, ampak tudi to, da v skoraj neskončnem vesolju nismo (mi) središče vsega. Takrat je bila fotografija iz vesolja nekaj revolucionarnega, danes pa fotografije Zemlje pridobivamo vsak dan. Ob pomoči podjetja Sinergise satelitski posnetki Zemlje omogočajo vsakemu, da pogleda na kakšno drugo celino in vidi, kakšne spremembe se dogajajo: presihajoča jezera, izginjajoči ledeniki, gozdovi, ki se krčijo zaradi pridobivanja palmovega olja … Od lepote našega planeta v preteklosti do skrbi zanj danes – tudi s satelitskimi posnetki, bosta govorila vodja podjetja Sinergise Grega Milčinski in profesor astronomije, astrofizike in kozmologije na Fakulteti za matematiko in fiziko dr. Tomaž Zwitter. Foto: NASA Goddard Space Flight Center (Flickr/Creative Commons)
Saj poznate tisto Einsteinovo: “Če nečesa, kar počneš, ne znaš razložiti 6-letniku, tega tudi sam ne razumeš.” Prava umetnost zna biti nekaj zelo kompleksnega strniti v elegantno in lepo razumljivo celoto. Na Znanstvenem slamu 2018 je na inovativen način svoja raziskovalna dela predstavilo deset raziskovalcev. Od skrivnostnega življenja jezer do lepote paličnega mešalnika. Od moderne čistilke plazme do tlakovcev in simetrije.
V Celju smo z gimnazijci razpravljali o mestih prihodnosti. Mladi razmišljajo, da bi promet v naslednjih desetletjih kazalo načrtovati pod zemljo in ne po zraku. Ker bo tako manj gneče in manj moteče za naravo. Kot zelo dobro alternativo vidijo urbano čebelarstvo, čebele nas lahko za prihodnost naučijo sodelovanja, nam pokažejo, kako lahko velika skupina v resnici deluje kot družina. Če bomo želeli živeti boljše, bomo morali stremeti k manj dražljajem, iskati manj hrupa, manj reklam. Le z minimalizmom in več umirjenosti bomo prihranili notranjo energijo za res pomembne stvari in uživali kakovostno življenje. "Daj, kolikor vzameš. In vse bo dobro," veli star maorski pregovor. Moč prevzemajo mesta in korporacije. Kaj se bo zgodilo, če mesta ne bodo več v interesu ljudi ampak kapitala? Nas lahko to čez 100 let pripelje v globalno diktaturo? Kakšna bodo v resnici mesta prihodnosti, kakšne metamorfoze urbanega okolja se obetajo? Katere vrednote bi morali ohraniti, kako poiskati še sprejemljivo ravnovesje med interesi kapitala in resničnimi potrebami ljudi, kako v širšo družbeno korist sinhronizirati umetno inteligenco in zdravo človeško pamet? Dobrodošli na poti naprej in nazaj v prihodnost! Avtorji: Jan Grilc, dr. Dan Podjed, Luka Hvalc, Maja Ratej. Sogovorniki: Dr. Theresa Cordova (Univerza v Chicagu), Dr. Marko Grobelnik (laboratorij za umetno inteligenco IJS), Petr Vorlik (Praška arhitekturna fakulteta), Maja Simoneti (Inštitut za politike prostora) dr. Blaž Vurnik (Mestni muzej Ljubljana), Roberta Marcaccio (DSDHA London), Dr. Gregor Papa (odsek za računalniške sisteme na IJS), dr. Christa Sommerer (intermedijska umetnica), Laura Gatti (krajinska arhitektka), Robert Muggah (Inštitut Igarape), Janez Dovč (fizik in glasbenik), dijaki Anej Kostrevc, Maj Mravlak, Katrin Kovač, Aleksander Breznikar, Jernej Lah, Nejc Drev in Mitja Suvajac (Gimnazija Celje – Center).
Kam se bo preselil promet prihodnosti, kdo ali kaj nas bo vozil, kaj bomo počeli v futurističnih prevoznih sredstvih? Lahko da bomo po drugem tiru nekoč gradili še tretji pas, vzpostavili mestni letalski promet, bolje izkoristili vodo, morda pa je v urbanih okoljih kar kolo še najučinkovitejša rešitev. Med vožnjo z različnimi prevoznimi sredstvi sedanjosti iščemo nove poti do boljšega prometa in mobilnosti prihodnosti. Skozi okno prevelikega avtomobila opazujemo, kako so prevladujoči načini premikanja spremenili podobo naših mest, vplivali na gradnjo in zaznamovali lokalne identitete. Razmišljamo o realnih izboljšavah, iščemo primere dobre prakse. V mestni gneči sanjamo o igranju taroka v avtonomnih avtomobilih prihodnosti. Pri gasilcih preverjamo, kaj bi se z varnostnega vidika zgodilo, če bi na avtocesti trčilo več električnih avtomobilov. Zapeljemo se v največje slovensko krožišče, ki ga povsem upravlja umetna inteligenca. Ustavimo se v centru za nadzor semaforjev in se med iskanjem parkirišča strinjamo, da bodo v prometu večne zagotovo ostale le kletvice. Sogovorniki: Petr Vorlik (Praška arhitekturna fakulteta), Dr. Blaž Vurnik (Mestni muzej Ljubljana), Aleš Žibert (Center za upravljanje prometa Ljubljana), Vladimir Zadina (Smart Prague), Rok Magister (SAP), Roberta Marcaccio (DSDHA London), Dejan Perušek (Ljubljanska gasilska brigada), dr. Tadej Kosel (Fakulteta za strojništvo), Avtorji: Jan Grilc, dr. Dan Podjed, Luka Hvalc
Njegova dedek in babica sta v Sloveniji živela le sedem kilometrov narazen, spoznala pa sta se šele v Združenih državah Amerike. “V mestu Rutland je dedkova družina šla pogledat nove priseljence, med njimi je bila tudi mlada ženska – pozneje moja babica. Moj dedek je na srečanje prinesel barvne gumijaste bonbone in ji jih ponudil. Všeč so ji bile barve in družinska legenda pravi, da sta se zato tudi zaljubila,” pravi Terry Supan, protetik, ki si je pravzaprav želel postati agent FBI. V svoji petdesetletni karieri je nanizal ogromno uspehov na področju razvijanja čimboljših – tudi robotskih – protez, ki pri človeku nadomestijo zgornje in spodnje ekstremitete. Ob uspešni poklicni poti ima še uspešen – več kot štiri desetletja dolg zakon. Da je tako uspešen, se lahko zahvali tudi odličnemu vzoru babice in dedka, ki sta se po vsakem prepiru pogovorila in si povedala, da se imata rada. O kariernih poteh in družinskih vezeh pa v pogovoru z Majo Stepančič.
Vsakdanje življenje v mestih poganja nevidno ožilje, infrastruktura, po kateri se pretakajo energija, voda, hrana, podatki, ljudje in ideje. Pa tudi fekalije in vedno več odpadkov. Nove tehnologije in umetna inteligenca hitro spreminjajo načine, kako upravljamo mesta, tisoči tipal in gore podatkov nam omogočajo nadzor nad procesi, o katerih včasih nismo vedeli ničesar. Kako lahko obstoječo javno infrastrukturo nadgradimo in spremenimo, da bo bolj učinkovito zadostila potrebam vse številnejšega prebivalstva? V tretjem delu serije Mesta prihodnosti se odpravimo v srce slovenskega električnega omrežja, odkrivamo različne pristope k pametnim mestom, raziskujemo vpliv urejanja javne infrastrukture na zdravje in pomen sodelovanja prebivalcev v procesih odločanja o njihovih soseskah. Sogovorniki: Andrej Vrbinc, vodja Republiškega centra vodenja (ELES), dr. Gregor Papa, vodja odseka za računalniške sisteme (IJS), Rok Magister (SAP), Franziska Dolak (Siemens), Maja Simoneti (Inštitut za politike prostora), Teresa Cordova (Great Cities Institute, University od Illinois in Chicago) Avtorji: Jan Grilc, dr. Dan Podjed, Luka Hvalc
Obiščemo najpametnejšo stavbo v Sloveniji, v kateri je nekaj tisoč senzorjev, vse je popolnoma avtomatizirano. Gremo v milansko stolpnico, na kateri raste 20 tisoč rastlin. Preselimo se v barcelonsko sosesko, ki je prednost na cestah dala pešcem in kolesarjem. Pogovarjamo se z Benečani, ki v boju proti masovnemu turizmu okupirajo prazne hiše. V drugem delu serije o mestih prihodnosti iščemo majhne trike in velike ideje za boljša bivališča in soseske prihodnosti. S hitrimi širitvami mest pospešeno nastajajo nove pobude, ki se poslužujejo inovativnih metod gradnje, zasnove in upravljanja prebivališč. Razmišljamo o primerih dobrih praks, ki so z enostavnimi arhitekturnimi in urbanističnimi posegi dosegle opazne spremembe v življenjskih vzorcih prebivalcev. Sogovorniki: Laura Gatti (krajinska arhitektka in agronominja), Maja Simoneti (Inštitut za politike prostora), Patrick Kaapert (prebivalec superotoka v Barceloni), Nicola Ussardi (Assemblea Sociale per la Casa, Benetke) Avtorji: Jan Grilc, dr. Dan Podjed, Luka Hvalc
Do leta 2050 bosta v urbanih okoljih živeli že dve tretjini ljudi, čeprav mesta pokrivajo le odstotek zemeljskega površja. Mesta so zelo živ organizem, ki se spreminja z neverjetno hitrostjo. Pričakujemo lahko več modelov mest, ki bodo videti kot Singapur. Takšna mesta bodo temeljila na tehnologijah, bodo bolj totalitarna, demokracije bo manj. Vzpostavljale se bodo povezave, a ne v prostoru, temveč v času. Nastale bodo interesne mestne zveze, na primer Londubaj (London in Dubaj), Pekingapur (Peking in Singapur), morda celo Ljubljanabor, interesna mestna zveza Ljubljane in Maribora. V prvem delu podkasta o mestih prihodnosti analiziramo tudi, s kakšnimi izzivi se bodo morala mesta spopasti, in razmišljamo o ukrepih za zagotavljanje boljšega življenjskega okolja, ki ga lahko mesta sprejmejo med širjenjem in preobrazbo. Kakšnim metamorfozam urbanega okolja bomo priče? Sogovorniki: Robert Muggah (Inštitut Igarape), dr. Theresa Cordova (Inštitut Great Cities, Univerza v Illinoisu), dr. Simona Kukovič (FDV) Avtorji: Jan Grilc, dr. Dan Podjed, Luka Hvalc
Posebna imunoterapija za zdravljenje raka; Preboj na področju laserske fizike; Razvoj zelene kemične industrije. To so letošnje Nobelove nagrade za medicino, fiziko in kemijo. Kaj prinašajo velika znanstvena odkritja tudi v naša vsakdanja življenja? V posebnem podkastu analiziramo s slovenskimi strokovnjaki: doc. dr. Mirjano Rajer, izrednim prof. dr. Igorjem Poberajem in doc. dr. Marjetko Podobnik.
Astronomi zvezde radi poimenujejo po barvah in velikostih: nekatere so rdeče orjakinje ali rdeče pritlikavke, naše Sonce je rumena pritlikavka, njegovo jedro pa se bo na koncu spremenilo v belo pritlikavko. Ameriški astrofizik Adam Burgasser pravi, da so posebno “kul”, kot se je izrazil, rjave pritlikavke, in to zato ker so tako zanimive in obenem tako hladne. Je zvezda, ki zmrzuje pod lediščem, sploh še zvezda in kaj jo razlikuje od planeta, odgovarjamo v tokratni Frekvenci X.
Kaj pravite na srečanje z influenserji, vplivnimi učenjaki, ki so v preteklosti delovali na ozemlju Slovenije? Od človeka, ki je skrbno popisal živalstvo in rastlinstvo Kranjske in bi – če bi živel danes – gotovo pisal blog o bogati flori Slovenije in v medijih opozarjal na nevarne poklicne bolezne; do človeka, ki je bil na čelu ene najmogočnejših gospodarskih trdnjav svojega časa in zato na moč vpliven, briljanten, a po drugi strani premalo taktičen znanstvenik, ki bi – če bi živel danes – gotovo na javnem profilu svojega Facebooka razpredal o svojih patentih, njegov prijatelj na Twitterju pa bi bil sam ameriški predsednik; in nazadnje do ženske, ki se je nosila drugače kot njene sodobnice, ki bi imela – če bi živela danes – na Twitterju zaradi svoje ektravagantnosti in vsestranske razgledanosti zagotovo ogromno sledilcev, v svojem mobilnem telefonu pa številke številnih, ki kaj veljajo. Ana Mayer Kansky, Lambert von Pantz in Giovanni Antonio Scopoli.
Ste poleti spustili možgane na pašo in se vam niti sanja ne, kaj je počela znanost, medtem ko ste bili vi na počitnicah? Dogajalo se je veliko – tako tam zgoraj na astronomskih skalah, kot v skritem nanosvetu. Odkrili so tekočo vodo na Marsu, človeštvo je razvilo predmet, ki bo potoval najhitreje doslej, spet so potrdili Higgsov bozon, več kot kvadratni kilometer velika ledena konstelacija senzorjev na Antarktiki pa je naposled dala prve razburljive rezultate. Pripovedujeta Maja Ratej in Luka Hvalc.
Trenutki, ko se sonce ujame med zidove starodavnega templja Karnak v Egiptu, še danes pričajo o izjemnosti kozmičnih pokrajin in sončnega kulta. Dr. Juan Antonio Belmonte Aviles preučuje fenomene arheoastronomije, pogled v nebo lahko namreč pojasni tudi največje zgodovinske skrivnosti. V prvi epizodi nove sezone Frekvence X tudi o Nabatejcih, čudežnem mestu Petra, rimskem Panteonu, domnevnih piramidah v Bosni in Hercegovini in o tem, da izjemnne najdbe potrebujejo še bolj izjemne dokaze. Avtor: Luka Hvalc
Na slovesnosti v Riu de Janeiru so ta teden podelili najprestižnejše nagrade v matematiki, ki jih opisujejo kot neke vrste Nobelove nagrade za to področje. Nagrado podeljujejo vsaka štiri leta štirim matematikom, mlajšim od 40 let, ki jim je uspel močan prodor na sicer precej klasičnih področjih te vede.
Neveljaven email naslov