Predlogi
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Ljudje smo si vedno želeli biti boljši, kot smo – lepši, pametnejši, močnejši, bolj nadarjeni in tako naprej. In tako z nenehnim razvojem znanosti, tehnologije in medicine izumljamo tudi vedno nove načine, kako polepšati in izboljšati po svojih merilih sodeč svoja nepopolna telesa.
Fitnesi, plastična kirurgija, tablete, ki spodbujajo kognitivne sposobnosti, prehranski dodatki in številne druge sodobne čarovnije nam bolj kot kdaj koli prej omogočajo postati na zunaj boljši in lepši. A nekateri menijo, da vse to ni nič v primerjavi s tem, kar bi lahko omogočilo korekturno poseganje v našo dedno zasnovo.
Genski zapis najmočneje določa naše telesne lastnosti, kot so višina, barva oči, oblika telesa, moč mišic in tako rekoč vse druge značilnosti našega fizičnega ustroja. Genski načrt v naših celicah obenem vpliva tudi na številne plati našega uma, psihičnih lastnosti in talentov, kot je tudi posluh.
Tako si ni težko predstavljati, da bi lahko s poseganjem v našo gensko zasnovo skorajda ustvarjali ljudi po receptu. Za zdaj je to še znanstvena fantastika, predvsem ker je v večini držav prepovedano poseganje v genski načrt otrok pred njihovim rojstvom, prav tako pa znanstveniki še vedno ne vedo natančno, katera mesta v našem genskem zapisu določajo vse naše lastnosti, čeprav se iz leta v leto to znanje skokovito širi.
Z eno od tehnologij pa se je deloma mogoče izogniti etičnim pomislekom, saj ne posega v gensko zasnovo, ampak omogoča izbor zarodkov glede na to, kakšen genski zapis imajo. To je predimplantacijska genska diagnostika s katero lahko genetiki preverijo lastnosti zarodka, ko je velik samo nekaj celic.
Na ta način lahko zdravniki izberejo oziroma zavržejo zarodke, ki imajo hude genske okvare, ki povzročajo bolezni, kot so mentalna zaostalost ali cistična fibroza. A z današnjim znanjem o človeški genetiki bi lahko izbirali tudi lastnosti, ki ne vplivajo na zdravje.
Leta 2009 je tako klinika za zdravljenje neplodnosti Fertility Institute v Los Angelesu bodočim staršem začela ponujati storitev, ki omogoča s pomočjo predimplantacijske genske diagnostike izbrati zarodke, ki bi imeli zaželeno barvo oči in las – recimo modre oči in svetle lase.
Pod hudimi kritikami strokovnjakov je ameriška klinika to storitev kmalu umaknila, vendar ostaja dejstvo, da bi bilo danes že mogoče izbirati zarodke glede na barvo oči in druge telesne lastnosti.
S predimplantacijsko gensko diagnostiko ni mogoče otroku dati nekaj, česar ni v genski zasnovi staršev, genski inženiring pa omogoča neposredno spreminjanje genov. Iz raziskav na živalih so tako znane številne modifikacije genov, ki omogočajo močno izboljšanje določenih lastnosti.
Raziskovalci iz Harvardske medicinske šole (Harvard Medical School) so leta 1999 z genskim inženiringom denimo ustvarili »schwarzenegerske miške«, ki so imele večjo mišično maso, genetiki iz ameriškega Salkovega inštituta pa leta 2004 še maratonske miške, ki so bile telesno veliko bolj vzdržljive.
Če so lahko to lahko naredili pri miškah, bi zelo verjetno lahko enako pri ljudeh. Podobno so znanstveniki v poznih 90-ih pri miškah odkrili gen, ki je povezan s spominom, in ustvarili miške s spremenjenim genom, ki so imele izboljšan spomin in sposobnost za učenje. Čeprav znanstveniki genski inženiring že desetletja uspešno uporabljajo na živalih, pa zaradi etičnih ovir praktično še niso preizkušali na ljudeh.
Da bi bilo to tehnologijo mogoče uporabiti tudi na človeških zarodkih, so leta 2007 pokazali raziskovalci iz newyorške Cornellove univerze, ki so ustvarili prvi gensko spremenjen človeški zarodek, ki je vseboval gen meduze. Za konec pa lahko omenimo še to, da so na svetu že ljudje, za katere bi lahko rekli, da so gensko spremenjeni. Leta 2001 so raziskovalci iz ameriškega Inštituta za reproduktivno medicino in znanost St. Barnabas namreč sporočili, da so uspešno omogočili rojstvo otrok, ki so imeli spremenjeno naravno gensko zasnovo.
V jajčeca žensk, ki so imele težave s plodnostjo, so namreč vstavili del vsebine jajčec zdravih žensk, v katerem je bil tudi majhen delec genskega načrta. Na ta način spočeti otroci imajo sedaj v sebi majhen delček genskega zapisa, ki ne izvira od njihove biološke mame, ampak od neke druge ženske. Lahko bi celo rekli, da imajo dve genski materi. Dejstvo je, da ni več pravo vprašanje, ali bi lahko izboljšali gensko zasnovo ljudi, ampak, ali si to upamo in lahko dovolimo?
Kako bi se v tem primeru spremenil naš svet, lahko samo ugibamo.
Prisluhnite tudi intervjuju. Gost oddaje je prof. dr. Radovan Komel z Medicinske fakultete Univerze v Ljubljani:
695 epizod
Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.
Ljudje smo si vedno želeli biti boljši, kot smo – lepši, pametnejši, močnejši, bolj nadarjeni in tako naprej. In tako z nenehnim razvojem znanosti, tehnologije in medicine izumljamo tudi vedno nove načine, kako polepšati in izboljšati po svojih merilih sodeč svoja nepopolna telesa.
Fitnesi, plastična kirurgija, tablete, ki spodbujajo kognitivne sposobnosti, prehranski dodatki in številne druge sodobne čarovnije nam bolj kot kdaj koli prej omogočajo postati na zunaj boljši in lepši. A nekateri menijo, da vse to ni nič v primerjavi s tem, kar bi lahko omogočilo korekturno poseganje v našo dedno zasnovo.
Genski zapis najmočneje določa naše telesne lastnosti, kot so višina, barva oči, oblika telesa, moč mišic in tako rekoč vse druge značilnosti našega fizičnega ustroja. Genski načrt v naših celicah obenem vpliva tudi na številne plati našega uma, psihičnih lastnosti in talentov, kot je tudi posluh.
Tako si ni težko predstavljati, da bi lahko s poseganjem v našo gensko zasnovo skorajda ustvarjali ljudi po receptu. Za zdaj je to še znanstvena fantastika, predvsem ker je v večini držav prepovedano poseganje v genski načrt otrok pred njihovim rojstvom, prav tako pa znanstveniki še vedno ne vedo natančno, katera mesta v našem genskem zapisu določajo vse naše lastnosti, čeprav se iz leta v leto to znanje skokovito širi.
Z eno od tehnologij pa se je deloma mogoče izogniti etičnim pomislekom, saj ne posega v gensko zasnovo, ampak omogoča izbor zarodkov glede na to, kakšen genski zapis imajo. To je predimplantacijska genska diagnostika s katero lahko genetiki preverijo lastnosti zarodka, ko je velik samo nekaj celic.
Na ta način lahko zdravniki izberejo oziroma zavržejo zarodke, ki imajo hude genske okvare, ki povzročajo bolezni, kot so mentalna zaostalost ali cistična fibroza. A z današnjim znanjem o človeški genetiki bi lahko izbirali tudi lastnosti, ki ne vplivajo na zdravje.
Leta 2009 je tako klinika za zdravljenje neplodnosti Fertility Institute v Los Angelesu bodočim staršem začela ponujati storitev, ki omogoča s pomočjo predimplantacijske genske diagnostike izbrati zarodke, ki bi imeli zaželeno barvo oči in las – recimo modre oči in svetle lase.
Pod hudimi kritikami strokovnjakov je ameriška klinika to storitev kmalu umaknila, vendar ostaja dejstvo, da bi bilo danes že mogoče izbirati zarodke glede na barvo oči in druge telesne lastnosti.
S predimplantacijsko gensko diagnostiko ni mogoče otroku dati nekaj, česar ni v genski zasnovi staršev, genski inženiring pa omogoča neposredno spreminjanje genov. Iz raziskav na živalih so tako znane številne modifikacije genov, ki omogočajo močno izboljšanje določenih lastnosti.
Raziskovalci iz Harvardske medicinske šole (Harvard Medical School) so leta 1999 z genskim inženiringom denimo ustvarili »schwarzenegerske miške«, ki so imele večjo mišično maso, genetiki iz ameriškega Salkovega inštituta pa leta 2004 še maratonske miške, ki so bile telesno veliko bolj vzdržljive.
Če so lahko to lahko naredili pri miškah, bi zelo verjetno lahko enako pri ljudeh. Podobno so znanstveniki v poznih 90-ih pri miškah odkrili gen, ki je povezan s spominom, in ustvarili miške s spremenjenim genom, ki so imele izboljšan spomin in sposobnost za učenje. Čeprav znanstveniki genski inženiring že desetletja uspešno uporabljajo na živalih, pa zaradi etičnih ovir praktično še niso preizkušali na ljudeh.
Da bi bilo to tehnologijo mogoče uporabiti tudi na človeških zarodkih, so leta 2007 pokazali raziskovalci iz newyorške Cornellove univerze, ki so ustvarili prvi gensko spremenjen človeški zarodek, ki je vseboval gen meduze. Za konec pa lahko omenimo še to, da so na svetu že ljudje, za katere bi lahko rekli, da so gensko spremenjeni. Leta 2001 so raziskovalci iz ameriškega Inštituta za reproduktivno medicino in znanost St. Barnabas namreč sporočili, da so uspešno omogočili rojstvo otrok, ki so imeli spremenjeno naravno gensko zasnovo.
V jajčeca žensk, ki so imele težave s plodnostjo, so namreč vstavili del vsebine jajčec zdravih žensk, v katerem je bil tudi majhen delec genskega načrta. Na ta način spočeti otroci imajo sedaj v sebi majhen delček genskega zapisa, ki ne izvira od njihove biološke mame, ampak od neke druge ženske. Lahko bi celo rekli, da imajo dve genski materi. Dejstvo je, da ni več pravo vprašanje, ali bi lahko izboljšali gensko zasnovo ljudi, ampak, ali si to upamo in lahko dovolimo?
Kako bi se v tem primeru spremenil naš svet, lahko samo ugibamo.
Prisluhnite tudi intervjuju. Gost oddaje je prof. dr. Radovan Komel z Medicinske fakultete Univerze v Ljubljani:
Pristanek sonde Rosetta na kometu, odkritje najstarejše zvezde na svetu, izum modrih LED diod, najdba okostja največjega dinozavra, rekordno globalno segrevanje ... To je le nekaj dosežkov, ki smo jih osvetlili v pregledni oddaji Frekvenca X.
Kaj je zaznamovalo znanstveno leto 2014? Za profesorja doktorja Petra Križana je bilo zagotovo v ospredju delo v najbolj zmogljivem pospeševalniku delcev na Japonskem. Prof. Križan je v Tsukubi, v bližini Tokia, preživel dva meseca, saj tam vodi veliko mednarodno skupino znanstvenikov, pri eksperimentu Belle 2 pa sodelujejo še nekateri naši strokovnjaki. Maja Ratej in Luka Hvalc sta se prof. Križanom srečala na Inštitutu Jožefa Stefana, poleg Fakultete za matematiko in fiziko njegovo matično institucijo v Sloveniji.
Kaj je tisto v človeškem glasu, kar ga naredi tako privlačnega, prepričljivega ali pa odbijajočega? Kako je mogoče, da lahko vso človekovo osebnost razodeva le kombinacija zvočnih valov? Naši sogovorniki v tokratni Frekvenci X bodo foniatrinja, glasovni forenzik, antropolog, dramska profesorica za področje govora, pevec, ki se ukvarja z grlenim petjem in mojster beatbox tehnike. Koktajl človeških glasov, v katerega so svoj delež prispevali tudi naši poslušalci, vam postrežemo v tokratni Frekvenci X.
Profesor Martin Asplund je vodilni svetovni strokovnjak za preučevanje kemične sestave vesolja, kot ga vidimo v zvezdah naše Galaksije. Je prvi, ki je natančno določil kemično sestavo Sonca – naše domače zvezde, ki jo najbolje poznamo -, vendar se je v zadnjem desetletju pokazalo, da je njegova kemična sestava drugačna, kot smo mislili dotlej. Kako velike so te razlike in zakaj je do njih prišlo? Iz česa so zvezde, kako natančno je znanje o tem in zakaj nas to zanima? Odgovore boste zvedeli v tokratni astronomski Frekvenci X. Oddajo pripravljamo v sodelovanju s prof.dr. Tomažem Zwittrom.
Ljudje smo seveda kompleksna živa bitja z zelo jasno izdelanimi preživetvenimi modeli. V nekaj tisočletjih hitrega razvoja smo ustvarili kompleksno civilizacijo, ki omogoča učinkovito globalno sodelovanje in hitro izmenjavo idej. A kaj konkretno je tista bistvena lastnost, ki nam je omogočila, da smo postali uspešnejši kot katera koli druga žival na planetu?
Z mikrobi se družimo vsak dan in to domala na slehernem mestu. Še več, v svojem telesu nosimo nekajkrat več mikroorganizmov, kot je naših celic! Dolgo časa so na Zemlji kraljevali sami in so po mnenju dr. Davida Stoparja z Biotehniške fakultete v Ljubljani najbolje prilagojena bitja za življenje na njej, ki nas bodo najverjetneje tudi preživela. V tokratni Frekvenci smo se podali v mikro svet mikrobov, šteli do 1031, koliko naj bi jih bilo po nekaterih ocenah na planetu, in ob primeru ebole ugotavljali, kako (ne)uspešni smo lahko v boju z njimi.
Po več kot deset let trajajoči odisejadi vesoljske sonde Rosetta 12. novembra pričakujemo spust pristajalnega modula Philae na komet Čurjumov-Gerasimenko. Gre za eno najbolj zapletenih vesoljskih nalog doslej.
Izbira spolnega in /ali življenjskega partnerja je ključnega pomena za ohranjanje genov skozi evolucijo, za boljši biološki fitnes človeka, ki ga merimo po tem, koliko potomcev, ki preživijo do spolne zrelosti, ima posameznik.
Ob skokovitem razvoju elektronike in napredku v biologiji znanstveniki in tehnologi zadnja leta vse bolj razmišljajo, kako bi lahko ustvarili čim večjo sinergijo med elektronskimi napravami in telesom. V naslednjem desetletju bi lahko z združitvijo elektronskih naprav in biologije na primer povrnili vid ali pozdravili poškodbe hrbtenjače, z mikročipi pa opravljali hitre diagnoze. Gost je dr. Stewart Smith z Univerze v Edinbourghu.
Zakaj bi nekdo šel na koncert tišine v izvedbi vrhunskega orkestra, zakaj bi zbirali prazne listke znanih oseb ali si navdušeno ogledovali nek prazen prostor? Raziskujemo, zakaj nam lahko nek dogodek ali predmet v ustreznem kontekstu sproži neverjetno ugodje. Pomembno je tudi naše predhodno vedenje in pričakovanje, ki dogodek vnaprej klasificira in označi. Gostimo uglednega ameriškega psihologa prof. Paula Blooma in slovenskega slikarja Arjana Pregla, ki v svoja dela vključuje tudi družbeni kontekst. Z vrhunskim violinistom Milkom Jurečičem v središču Ljubljane preverjamo, kaj vpliva na ugodje mimoidočih in njihovo dobrodušnost …
Smo v tednu razglasitev letošnjih Nobelovih nagrad. V ponedeljek so razglasili nagrajence na področju medicine, in sicer za odkritje sistema pozicioniranja v možganih, tako imenovanega “notranjega GPS sistema”, ki človeku omogoča orientacijo v prostoru. Letošnjo Nobelovo nagrado na področju fizike je prinesel izum modrih LED diod, nagrajenci na področju kemije pa so prestižno nagrado dobili za razvoj na področju fluoroscenčne mikroskopije. Zakaj so ti izumi pomembni, razpravljamo s strokovnjaki na izbranih področjih
Mednarodna skupina astronomov pod vodstvom Janeza Kosa in prof.Tomaža Zwittra s Fakultete za matematiko in fiziko v Ljubljani je nedavno v prestižni reviji Science objavila članek, v katerem so prvič raziskali porazdelitev medzvezdnih oblakov makromolekul v prostoru med zvezdami naše galaksije in problematiko medzvezdnih absorbcijskih pasov neznanega izvora. Gre za pomemben gradnik pri iskanju odgovorov na vprašanja: v kakšnem vesolju smo in kaj je tu okrog nas, iz česa nastanejo nove zvezde, kako se ta material zgosti v nove predmete in nove planete.
Če še tehtate, kam se podati, pripravljamo nekaj namigov za vas. Od tega, da spoznate avtonomnega robota, ki zmore čuda reči, do potovanja v skrivnostne globine vesolja. Raziskovalci bodo v petek tudi razkrili, katera jabolka ekološke pridelave so najboljša, in nas pospremili med stene umetnih krvnih žil prihodnosti. Za piko na “i” pa smo pred petkovim odprtjem obiskali tudi razstavo o tem, kako si je slovenska znanstvena domišljija zamislila sedmi del Vojne zvezd.
Nobelov nagrajenec, Britanec Oliver Smithies, ki je to prestižno nagrado za znanstvene dosežke prejel leta 2007 za prelomna odkritja na področju matičnih celic in rekombinantne DNK. Čeprav že 89-leten, iz njega še vedno izžareva otroško navdušenje nad eksperimenti.
Evropska vesoljska sonda Rosetta je pred kratkim po desetih letih potovanja ujela drveči komet Čurjumov-Gerasimenko in kot prvo vesoljsko plovilo v zgodovini tovrstnih raziskovanj kroži okrog njega, dokler se mu ne bo novembra toliko približala, da bo nanj poslala robota. Rosetta je komet, ki se premika s hitrostjo 55 tisoč kilometrov na uro, ujela več kot 400 milijonov kilometrov stran od nas.
Znanstveniki se zadnja leta navdušujejo nad osupljivimi sposobnostmi in prezrtim pomenom biološke molekule, za katero je veljalo, da igra v delovanju naših celic stransko vlogo. Drobcene molekule, ki so sprožile pravo renesanso v genetiki, obenem pa obljubljajo tudi napredek v medicini, slišijo na ime ribonukleinske kisline ali krajše RNK. Če vam je ta kratica znana, je to zato, ker imajo podobno ime kot njihova veliko bolj slavna sorodnica – kraljeva molekula DNK.
O enem najslavnejših genijev 20-ega stoletja, ki je postavil temelje moderni fiziki, Albertu Einsteinu, ste bržkone že veliko slišali, v tokratni oddaji pa odstiramo tisto razsežnost njegovega življenja, ki je javnosti manj znana. Einstein je v svojem najbolj ustvarjalnem obdobju živel in deloval v tesni navezi s svojo ženo, prav tako matematičarko in fizičarko – Milevo Marić, rojeno v bližini Novega Sada.
O enem najslavnejših genijev 20-ega stoletja, ki je postavil temelje moderni fiziki, Albertu Einsteinu, ste bržkone že veliko slišali, v tokratni oddaji pa odstiramo tisto razsežnost njegovega življenja, ki je javnosti manj znana. Einstein je v svojem najbolj ustvarjalnem obdobju živel in deloval v tesni navezi s svojo ženo, prav tako matematičarko in fizičarko – Milevo Marić, rojeno v bližini Novega Sada.
Tokrat o prihodnosti vesoljskih raziskav, ki postajajo vse bolj vznemirljive in zanimive. Tehnologija namreč zelo napreduje, zasuki so nepričakovani in zelo uspešni. Frekvenca X s prof. Dr. Tomažem Zwittrom in Mijo Škrabec Arbanas.
Otroci s tremi biološkimi starši? Morda se sliši strašljivo, a gre za postopek, ki bi preprečil dedni prenos bolezni in tako obudil upanje mnogih družin, ki se spopadajo z genetskimi obolenji. Zanima nas predvsem, ali sta tehnologija in znanost že dovolj razviti, da bi bilo mogoče presaditev mitohondrijev uporabiti v klinični praksi; katere genetske bolezni bi bilo mogoče s tem preprečiti, kako pogoste so te bolezni in kako je z etičnimi vprašanji ter pomisleki? Naš gost je prof. Doug Turnbull z univerze v Newcastlu.
Neveljaven email naslov