Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Super ure. Patrick Gill (NPL)

29.03.2012


Malokdo se zaveda, da sodobni način življenja iz ozadja tiho usmerjajo supernatančne atomske ure, ki so eden najbolj izjemnih dosežkov znanosti in tehnologije. Tako natančno, kot znamo danes meriti čas, verjetno ne zmoremo izmeriti skoraj ničesar drugega.

Revolucija v izdelavi izjemno točnih ur se je začela v drugi polovici prejšnjega stoletja, ko so znanstveniki odkrili, kako je mogoče ob pomoči atomov izredno natančno meriti čas. Leta 1955 je britanski fizik Louis Essen izdelal prvo zanesljivo atomsko uro, ki je zamujala samo eno sekundo na 300 let.

Seveda so kmalu potem atomske ure s svojo nepremagljivo točnostjo postane nov standard v merjenju časa. Naš svet je začel utripati v ritmu atomov. Pri atomskih urah so vlogo mehaničnih nihal, ki odštevajo čas v običajnih urah, prevzeli elektroni, ki v enakomernih časovnih utripih spreminjajo položaj v atomu. Z merjenjem tega plesa elektronov je mogoče osupljivo natančno določiti tiktakanje časa.

Leta 1967 so tako znanstveniki na novo opredelili sekundo kot 9.192.631.770 period sevanja, ki ustrezajo prehodu med hiperfinima ravnema osnovnega stanja atoma cezij-133«. V naslednjih desetletjih so neutrudno izboljševali natančnost atomske ure. Ta se dandanes zmoti samo za kakšno sekundo na reci in piši nekaj milijonov let.

Srce sodobnih atomskih ur so cezijevi atomi, ohlajeni na supernizko temperaturo. In njihova natančnost res ni od muh. Trenutno najbolj točna ura na svetu, imenuje se NPL CsF2, je v britanskem Nacionalnem fizikalnem laboratoriju na robu Londona in se zmoti za manj kot sekundo v nepredstavljivih 138 milijonih let. Zdi se prav neverjetno, da lahko znanstveniki dandanes zgradijo tako točno in dovršeno napravo.

Kakih 200 podobno natančnih atomskih ur v 50 različnih državah skupaj določa mednarodni atomski čas, na podlagi katerega poteka koordinirani univerzalni čas, ki se uporablja za civilno merjenje časa. Kadar koli si nastavite uro, ki vam prehiteva, nazaj na pravilen čas, ki ga predvajajo na primer po radiu, vedite, da ta izvira iz atomskih ur.

Izjemna natančnost sodobnih atomskih ur ni samo lepotnega pomena, ampak je bistvena za brezhibno delovanje našega sveta. Na te ure se zanašajo delovanje interneta, sistemov GPS, oddajanje radijskih in televizijskih valov, bančne transakcije in še kaj bi se našlo. Brez popolnoma točnih ur današnji način življenja tako rekoč ne bi bil možen.

A čeprav so raziskovalci z atomskimi urami dosegli zavidljivo stopnjo natančnosti, nikakor niso prenehali iskati in izdelovati še boljših in točnejših. Leta 2001 so v ameriškem Nacionalnem institutu standardov in tehnologije razvili tako imenovane optične atomske ure, ki so še natančnejše od klasičnih cezijevih atomskih ur. Pravzaprav je supernatančne zanje preskromna beseda.

Ultrasupernatančne optične atomske ure bi lahko namreč podrle vse meje v predstavah o tem, kako točno lahko izmerimo čas. Leta 2010 so isti raziskovalci zgradili prototip optične ure, ki zaostaja ali pridobi le sekundo na osupljivih 3,7 milijarde let. Če bi tako uro zagnali ob začetku vesolja oziroma ob velikem poku, bi do danes zamujala samo 4 sekunde.

Strokovnjaki napovedujejo, da bodo optične ure v naslednjih letih nadomestile trenutne atomske, čeprav si navadni ljudje verjetno težko predstavljajo, zakaj bi potrebovali ure, ki zamujajo le sekundo na nekaj milijard let, ko pa že imamo take, ki zamujajo sekundo na sto milijonov let. Ampak tudi optične atomske ure niso zadnja domislica merilcev časa. Zadnja leta se pojavljajo ideje o še boljših urah. Med take sodijo tako imenovane jedrske in kvantne ure.

Leta 2011 so ameriški fiziki s tehnološkega inštituta v Georgiji izračunali, da bi jedrska ura na podlagi elementa torija zamujala samo sekundo v 200 milijardah let. Pri tem se že poraja vprašanje, ali bo naše vesolje sploh obstajalo toliko časa. Vsekakor se nam torej ni treba bati, da bi zaradi nenatančnih ur v življenju lahko izgubili kakšno sekundo.

INTERVJU:
Prof. Patrick Gill je eden najbolj vrhunskih časomerilcev na svetu. Dela v britanskem laboratoriju za fiziko, kjer skrbi tudi za eno najbolj natančnih super atomskih ur na planetu.

Profesor Gill, kje na svetu trenutno tiktaka najbolj točna atomska ura in kako natančna je?

Situacija je trenutno takšna, da določeno število t. i. nacionalnih standardnih laboratorijev v različnih državah upravlja set najnatančnejših atomskih ur. To so t.i. fontanske cezijeve atomske ure. Zdaj  jih deluje okrog sedem ali osem, nameščene pa so v ZDA, Veliki Britaniji, Franciji, Nemčiji, Italiji in Japonski. Poleg teh ur imajo v mnogih državah še druge, manj natančne atomske ure. Te fontanske cezijeve atomske ure smo razvijali zadnjih 20 let in najboljše lahko merijo čas z zaostankom ene sekunde na 60 milijonov let ali več.

Bi bilo sodobno življenje sploh mogoče brez teh super ur? Zakaj je pomembno, da ura zaostane samo za eno sekundo na nekaj milijonov let?

Da, ena sekunda na 60 milijonov let res ni čas, ki bi se nas dotikal, saj nas zanimajo mnogo krajši intervali – na primer  en dan. Vendar pa obstajajo aplikacije, ki se zanašajo na takšno natančnost. Na najosnovnejšm koncu denimo želiva vedeti, koliko je ura, vendar samo do kakšne minute natančno. Malo večjo natančnost potrebujejo v športu, za kako milisekundo. Še višje so finančne institucije, saj želijo pri borznem poslovanju veliko točnost. Potem je pomembna natančnost pri distribuciji električne energije – to je zahteven časovni problem, zato so pomembne  mikrosekunde. Še dlje pa so satelitska navigacija in naprave v avtomobilih ali telefonih  – zanašajo se na atomske ure v satelitih. Najvišjo natančnost pri merjenju časa pa potrebujejo v visoki znanosti, recimo v sodobni astronomiji, kozmologiji in drugih temeljnih znanstvenih vedah.

Kako zahtevno pa je narediti takšno atomsko uro in koliko približno stane?

Manj natančne atomske ure je mogoče tudi kupiti, za recimo kakih deset tisoč dolarjev. Kupiti je mogoče tudi atomske ure velikosti kosa mila. Če pa govorimo o vrhunskih primarnih standardih, se pravi fontanskih cezijevih atomskih urah – te so  visoke približno 2 metra, v njih sta ultra vakuum in oblak cezijevih atomov, ki so z laserji ohlajeni na okrog -273 stopinj.

Znanstveniki bi radi naredili še natančnejše atomske ure. Kako natančne ure pa je mogoče narediti oziroma kakšne super ure bomo imeli v prihodnosti. In zakaj potrebujemo še natančnejše ure? Ali je res pomembno zaostajanje za eno sekundo v nekaj deset milijonih let ali v nekaj sto milijonih let?

Da, človeku na ulici za to ni mar, v visoki znanosti – kozmologiji, osnovni fiziki in podbno pa je pomembno, izboljšanje natančnosti pri merjenju časa. Torej je to uporabno za visoko znanost, vendar pa ljudje vedno najdejo tudi način za  prilagoditev za bolj tehnološke potrebe. Dober primer tega iz preteklosti je nastanek globalnega navigacijskega sistema GPS, ki so ga  omogočile atomske ure. Kar zadeva izboljšanje natančnosti, pa bi lahko točnost atomskih ure s pomočjo laserske tehnologije trenutno izboljšali še za okrog 100-krat.


Frekvenca X

688 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Super ure. Patrick Gill (NPL)

29.03.2012


Malokdo se zaveda, da sodobni način življenja iz ozadja tiho usmerjajo supernatančne atomske ure, ki so eden najbolj izjemnih dosežkov znanosti in tehnologije. Tako natančno, kot znamo danes meriti čas, verjetno ne zmoremo izmeriti skoraj ničesar drugega.

Revolucija v izdelavi izjemno točnih ur se je začela v drugi polovici prejšnjega stoletja, ko so znanstveniki odkrili, kako je mogoče ob pomoči atomov izredno natančno meriti čas. Leta 1955 je britanski fizik Louis Essen izdelal prvo zanesljivo atomsko uro, ki je zamujala samo eno sekundo na 300 let.

Seveda so kmalu potem atomske ure s svojo nepremagljivo točnostjo postane nov standard v merjenju časa. Naš svet je začel utripati v ritmu atomov. Pri atomskih urah so vlogo mehaničnih nihal, ki odštevajo čas v običajnih urah, prevzeli elektroni, ki v enakomernih časovnih utripih spreminjajo položaj v atomu. Z merjenjem tega plesa elektronov je mogoče osupljivo natančno določiti tiktakanje časa.

Leta 1967 so tako znanstveniki na novo opredelili sekundo kot 9.192.631.770 period sevanja, ki ustrezajo prehodu med hiperfinima ravnema osnovnega stanja atoma cezij-133«. V naslednjih desetletjih so neutrudno izboljševali natančnost atomske ure. Ta se dandanes zmoti samo za kakšno sekundo na reci in piši nekaj milijonov let.

Srce sodobnih atomskih ur so cezijevi atomi, ohlajeni na supernizko temperaturo. In njihova natančnost res ni od muh. Trenutno najbolj točna ura na svetu, imenuje se NPL CsF2, je v britanskem Nacionalnem fizikalnem laboratoriju na robu Londona in se zmoti za manj kot sekundo v nepredstavljivih 138 milijonih let. Zdi se prav neverjetno, da lahko znanstveniki dandanes zgradijo tako točno in dovršeno napravo.

Kakih 200 podobno natančnih atomskih ur v 50 različnih državah skupaj določa mednarodni atomski čas, na podlagi katerega poteka koordinirani univerzalni čas, ki se uporablja za civilno merjenje časa. Kadar koli si nastavite uro, ki vam prehiteva, nazaj na pravilen čas, ki ga predvajajo na primer po radiu, vedite, da ta izvira iz atomskih ur.

Izjemna natančnost sodobnih atomskih ur ni samo lepotnega pomena, ampak je bistvena za brezhibno delovanje našega sveta. Na te ure se zanašajo delovanje interneta, sistemov GPS, oddajanje radijskih in televizijskih valov, bančne transakcije in še kaj bi se našlo. Brez popolnoma točnih ur današnji način življenja tako rekoč ne bi bil možen.

A čeprav so raziskovalci z atomskimi urami dosegli zavidljivo stopnjo natančnosti, nikakor niso prenehali iskati in izdelovati še boljših in točnejših. Leta 2001 so v ameriškem Nacionalnem institutu standardov in tehnologije razvili tako imenovane optične atomske ure, ki so še natančnejše od klasičnih cezijevih atomskih ur. Pravzaprav je supernatančne zanje preskromna beseda.

Ultrasupernatančne optične atomske ure bi lahko namreč podrle vse meje v predstavah o tem, kako točno lahko izmerimo čas. Leta 2010 so isti raziskovalci zgradili prototip optične ure, ki zaostaja ali pridobi le sekundo na osupljivih 3,7 milijarde let. Če bi tako uro zagnali ob začetku vesolja oziroma ob velikem poku, bi do danes zamujala samo 4 sekunde.

Strokovnjaki napovedujejo, da bodo optične ure v naslednjih letih nadomestile trenutne atomske, čeprav si navadni ljudje verjetno težko predstavljajo, zakaj bi potrebovali ure, ki zamujajo le sekundo na nekaj milijard let, ko pa že imamo take, ki zamujajo sekundo na sto milijonov let. Ampak tudi optične atomske ure niso zadnja domislica merilcev časa. Zadnja leta se pojavljajo ideje o še boljših urah. Med take sodijo tako imenovane jedrske in kvantne ure.

Leta 2011 so ameriški fiziki s tehnološkega inštituta v Georgiji izračunali, da bi jedrska ura na podlagi elementa torija zamujala samo sekundo v 200 milijardah let. Pri tem se že poraja vprašanje, ali bo naše vesolje sploh obstajalo toliko časa. Vsekakor se nam torej ni treba bati, da bi zaradi nenatančnih ur v življenju lahko izgubili kakšno sekundo.

INTERVJU:
Prof. Patrick Gill je eden najbolj vrhunskih časomerilcev na svetu. Dela v britanskem laboratoriju za fiziko, kjer skrbi tudi za eno najbolj natančnih super atomskih ur na planetu.

Profesor Gill, kje na svetu trenutno tiktaka najbolj točna atomska ura in kako natančna je?

Situacija je trenutno takšna, da določeno število t. i. nacionalnih standardnih laboratorijev v različnih državah upravlja set najnatančnejših atomskih ur. To so t.i. fontanske cezijeve atomske ure. Zdaj  jih deluje okrog sedem ali osem, nameščene pa so v ZDA, Veliki Britaniji, Franciji, Nemčiji, Italiji in Japonski. Poleg teh ur imajo v mnogih državah še druge, manj natančne atomske ure. Te fontanske cezijeve atomske ure smo razvijali zadnjih 20 let in najboljše lahko merijo čas z zaostankom ene sekunde na 60 milijonov let ali več.

Bi bilo sodobno življenje sploh mogoče brez teh super ur? Zakaj je pomembno, da ura zaostane samo za eno sekundo na nekaj milijonov let?

Da, ena sekunda na 60 milijonov let res ni čas, ki bi se nas dotikal, saj nas zanimajo mnogo krajši intervali – na primer  en dan. Vendar pa obstajajo aplikacije, ki se zanašajo na takšno natančnost. Na najosnovnejšm koncu denimo želiva vedeti, koliko je ura, vendar samo do kakšne minute natančno. Malo večjo natančnost potrebujejo v športu, za kako milisekundo. Še višje so finančne institucije, saj želijo pri borznem poslovanju veliko točnost. Potem je pomembna natančnost pri distribuciji električne energije – to je zahteven časovni problem, zato so pomembne  mikrosekunde. Še dlje pa so satelitska navigacija in naprave v avtomobilih ali telefonih  – zanašajo se na atomske ure v satelitih. Najvišjo natančnost pri merjenju časa pa potrebujejo v visoki znanosti, recimo v sodobni astronomiji, kozmologiji in drugih temeljnih znanstvenih vedah.

Kako zahtevno pa je narediti takšno atomsko uro in koliko približno stane?

Manj natančne atomske ure je mogoče tudi kupiti, za recimo kakih deset tisoč dolarjev. Kupiti je mogoče tudi atomske ure velikosti kosa mila. Če pa govorimo o vrhunskih primarnih standardih, se pravi fontanskih cezijevih atomskih urah – te so  visoke približno 2 metra, v njih sta ultra vakuum in oblak cezijevih atomov, ki so z laserji ohlajeni na okrog -273 stopinj.

Znanstveniki bi radi naredili še natančnejše atomske ure. Kako natančne ure pa je mogoče narediti oziroma kakšne super ure bomo imeli v prihodnosti. In zakaj potrebujemo še natančnejše ure? Ali je res pomembno zaostajanje za eno sekundo v nekaj deset milijonih let ali v nekaj sto milijonih let?

Da, človeku na ulici za to ni mar, v visoki znanosti – kozmologiji, osnovni fiziki in podbno pa je pomembno, izboljšanje natančnosti pri merjenju časa. Torej je to uporabno za visoko znanost, vendar pa ljudje vedno najdejo tudi način za  prilagoditev za bolj tehnološke potrebe. Dober primer tega iz preteklosti je nastanek globalnega navigacijskega sistema GPS, ki so ga  omogočile atomske ure. Kar zadeva izboljšanje natančnosti, pa bi lahko točnost atomskih ure s pomočjo laserske tehnologije trenutno izboljšali še za okrog 100-krat.


18.04.2024

Velike živalske migracije: Epsko popotovanje, ki v marsičem ostaja nepojasnjeno

Vsako leto se nad našimi glavami seli na milijarde ptic, žuželk, netopirjev; njihova epska potovanja povezujejo celine in niso imuna na vpliv človeka, ki je zadal velik udarec zlasti selitvam velikih sesalcev. Kdo so selivci rekorderji, kaj jih žene in kako najdejo svoj cilj?


10.04.2024

Stoletnica elektroencefalografije: "Mi na daleč prisluškujemo možganom"

“Prosimo vas, da zaprete oči, med preiskavo se tudi ne pogovarjamo.” To so začetne besede asistenta v ambulanti za merjenje električne dejavnosti možganov EEG, kamor se je tokrat, ob skorajšnji stoletnici prve meritve na človeku, povabila tudi Frekvenca X. Elektroencefalograf je naprava, ki jo je na človeku prvič uporabil nemški psihiater Hans Berger 6. julija 1924. Kljub svoji starosti se tehnologija do danes ni prav veliko spremenila, ob merjenju dejavnosti še vedno na glavo postavijo elektrode, ob pomoči katerih ugotavljajo mogoča odstopanja od normalne električne dejavnosti možganov. Pravzaprav jim “na daleč” prisluškujejo. In to so delali tudi, ko se je na Nevrološki kliniki pri vodji Centra za epilepsijo odraslih dr. Bogdanu Lorberju oglasila Maja Stepančič. Vabljeni torej na posebno zvočno izkušnjo, prisluškovali boste lahko preiskavi EEG.


04.04.2024

Oceani: Pregreti modri motor planeta

Če omenimo oceane, na kaj pomislite? Večina ljudi pomisli na ribe in na njihovo slanost …, na biologijo in kemijo morja torej. Toda tisto, kar res zaznamuje oceane, je njihova fizika.


28.03.2024

Znanost v marcu: Od ekstremofilnih gliv, anafilaksije, do fizikalne fotografije

Tokratna Frekvenca X se spet sprehaja po največjih ali najzanimivejših dosežkih meseca. Marec je mesec, ko naša oddaja praznuje rojstni dan, mesec, ko se podeljujejo Jesenkove nagrade; letos je nagrado za življenjsko delo prejela prof. dr. Nina Gunde Cimerman z biotehniške fakultete, ki bo tudi naša gostja. Poleg tega naj omenimo še nekaj novic iz sveta znanosti: govorili bomo o pomembni raziskavi Univerzitetne klinike za pljučne bolezni in alergijo Golnik v zvezi z anafilaksijo, povabili se bomo na pojedino zvezd, ki se hranijo tudi s planeti, in odgovorili na vprašanje, zakaj antropocen ne bo postal uradno poimenovanje dobe, v kateri ima največji vpliv na okolje človek.


22.03.2024

Frekvenca X pred občinstvom: Od orjakov do liliputancev

Je biti velik ali majhen v naravi prednost ali slabost? Kaj pa zares velik? Frekvenca X, poljudnoznanstvena oddaja Vala 202, svoj 15. rojstni dan praznuje s sebi enakimi. Pred mladim občinstvom in v čisto pravem radijskem studiu načenjamo temo velikosti in kako ta vpliva na ves živi svet okoli nas. Potujte z nami skozi zgodovino našega planeta in odkrijte največja bitja, ki so ga poseljevala. Kaj je pripomoglo k temu, da so po Zemlji nekoč lomastili megalomanski kuščarji in kako so se sploh premikali? Zakaj so kiti še dandanes tako ogromni in ali so orjaški pajki in kačji pastirji sploh mogoči? In kaj imata o fantazijskih bitjih, kot so leteči zmaji, krilati konji pegazi, palčki in velikani iz pripovedk, povedati fizika in biologija? Zagrizli pa bomo tudi v iskanje odgovora, kakšen mojstrski kipar je narava, ki se je domislila človeka – ravno prav velikega sesalca z nadpovprečno velikimi možgani. Kako se je z našo velikostjo igrala evolucija in do kod še lahko zrastemo? Kako bi živeli, če bi se nenadoma – kot Alica – povečali ali pomanjšali? Zaneslo pa nas bo tudi daleč stran v vesolje z misijo, da se domislimo planeta, na katerem bi lahko obstajali velikani.


21.03.2024

Tomaž Zwitter: Kot človeštvo smo spoznali, da smo manj in manj posebni

Preselimo se 15 let v preteklost, natančneje – odpotujemo v 9. april leta 2009, ko je Mija Škrabec Arbanas pripravila eno izmed prvih oddaj, ki so v Frekvenci X obravnavale vesolje. V tem času se je marsikaj spremenilo: od vse daljših sprehodov astronavtov zunaj vesoljskih postaj do napredka pri razvoju vesoljskih oblačil, ki omogočajo boljšo gibljivost, do raztrosa človeškega pepela v vesolju. 15-letni napredek v raziskovanju vesolja komentira naš dolgoletni strokovni sodelavec astronom in astrofizik Tomaž Zwitter.


21.03.2024

Roger Penrose: O modi, veri in fantaziji v fiziki

Gost v tokratni Frekvenci X je bil Roger Penrose, zelo eminentno ime svetovne matematične fizike, ki se ga velikokrat omenja v povezavi Stephenom Hawkingom. Penrose je v svoji dolgi karieri pomembno prispeval predvsem k teoriji splošne relativnosti, je pa tudi avtor tako imenovanih Penrose-Hawking teoremov o singularnostih, ki so mu prinesli Nobelovo nagrado in ki pravijo, da se črne luknje tvorijo iz zelo splošnih pogojev sesedanja materije ter da se v središču črne luknje ustvari singularnost v končnem času. V oddaji se z njim sprašujemo tudi, kaj je v sodobni fiziki moda, kaj vera in kaj fantazija, dotaknemo se tudi vprašanja, kako pri umetni inteligenci 'izračunati' razumevanje in kako enigmatična je fizika možganov.


14.03.2024

Pornografija, možgani in zasvojenost

Ob Tednu možganov, ki je letos posvečen spolnosti, raziskujemo odvisnost od pornografije, kakšni so simptomi, kaj se dogaja v naših možganih, zakaj je lahko izpostavljenost otrok in mladostnikov pornografiji problematična in kakšne dodatne nevarnosti je prinesel razmah sodobnih tehnologij. V skupni epizodi z oddajo Možgani na dlani na Prvem tudi o pozitivnih plateh rabe pornografije.


07.03.2024

Nevidni svet predorov

Ste vedeli, da bo na celotni progi drugega tira porabljenih za pet Eifflovih stolpov jeklenih armatur? Inženirji, gradbinci in izvajalci del pa seveda pri gradnji ne uporabljajo le kovinskih pripomočkov. Kakšna je znanost za gradnjo predorov, kako ti sploh nastanejo, kdo pri tem sodeluje in kje vse lahko strokovnjaki sploh kopljejo predore? V oddaji slišite tudi zvoke iz globin enega izmed slovenskih predorov.


29.02.2024

Znanost v februarju: O dinozavrih, anakondi, Hallersteinu in avtoimunskih boleznih

Februar je pri koncu in Frekvenca X njegove zadnje ure, ki so zaradi prestopnega leta pravzaprav bonus, izkorišča za prelet tem, ki so ta mesec odmevale v znanosti. Maja Ratej raziskuje avtoimunske bolezni in zakaj jih bomo lahko morda v dogledni prihodnosti uspešno zdravili. Preverila je tudi, kakšna velikanka je na novo odkrita anakonda v Južni Ameriki in koliko več vemo o dinozavrih 200 let po njihovem odkritju. Več pa tudi o tem, da se lahko v Ljubljani po novem pomudite pri Hallersteinovem zvezdnem opazovalniku, pa o ameriškem zasebnem naskoku na Luno, rasni genetiki in celo gensko spremenjenih bananah.


22.02.2024

Reportaža iz CERN-a: Kjer premikajo meje znanosti!

Pred kratkim smo se s Frekvenco X mudili v CERN-u, Evropski organizaciji za jedrske raziskave, v kateri se že 70 let ukvarjajo s trki osnovnih delcev. Gre za megalomansko raziskovalno območje na meji med Švico in Francijo v Ženevi, pod katerim je 27 kilometrov dolg Veliki hadronski trkalnik. V njem so, spomnimo, leta 2012 ob pomoči velikanskih detektorjev potrdili obstoj Higgsovega bozona. Trki, ki se z velikanskimi energijami in hitrostmi dogajajo v pospeševalniku, razkrivajo delovanje vesolja v njegovih prvih trenutkih, ob tem pa se poskušajo raziskovalci dokopati tudi do odgovorov na to, kaj bi utegnila biti temna snov in kako bolje spoznati antimaterijo.


14.02.2024

Človeška napaka

Če odgovorna oseba po hudi delovni nesreči javnost obvesti, da je bil vzrok tragičnega dogodka človeška napaka, nas takšno pojasnilo ne sme pomiriti, ampak nas mora še bolj vznemiriti. Skladno s sodobnimi smernicami za zagotavljanje varnosti, ki temeljijo na znanstvenih raziskavah, je človeška napaka sprejemljiv vzrok za razlago neželenega dogodka le v zelo redkih primerih. Po temeljiti preučitvi okoliščin nesreče se večinoma namreč izkaže, da je za napako kriva sistemska pomanjkljivost in ne nepozoren posameznik. Česa nas lahko naučijo človeške napake, kakšni psihološki in varnostni mehanizmi so v ozadju, kako je zdravniškimi napakami in kakšna bo vloga umetne inteligence?


01.02.2024

Znanost v januarju: O milnih mehurčkih, starodavni Amazoniji in napredku pri zdravljenju raka

Pred evropskim dnem boja proti raku Maja Ratej poizveduje o napredku pri diagnostiki in zdravljenju raka, zastavlja pa si tudi vprašanje, kakšno liso je na tem področju pustila koronavirusna doba. V januarski beri novic na področju znanosti jo zanimajo odmevno odkritje 2500 let starih ostankov kompleksa mest v Amazoniji in novi poskusi pošiljanja plovil na Luno. Za konec pod drobnogled vzame še raziskovalni dosežek slovenskih znanstvenikov, ki je januarja odmeval tudi v mednarodnem tisku o popularni znanosti, in sicer kako iz milnega mehurčka ustvariti natančen laser.


25.01.2024

Plavajoča mesta? Zakaj pa ne!

V zadnjih nekaj letih se v spletnih časopisih pogosto znajdejo članki o mestih, ki bodo krojila našo prihodnost bivanja. Trajnostno, zeleno, obnovljivi viri energije, javni prevoz, 15-minutno mesto, individualnost bomo zamenjali za skupnost … to so pogosto napovedi velikih arhitekturnih birojev, ki snujejo tako imenovana mesta prihodnosti. Mesta, ki bodo nasledila takšna, kot jih poznamo danes.


18.01.2024

Izkašljano in vročično: Naše telo kot uigran orkester v boju proti virusom

V delu leta, ko na nas od vsepovsod prežijo okužbe dihal, pri Frekvenci X opazujemo simfonijo našega telesa v boju zoper njih. Še posebej nas zanimajo vročina, kašelj in kihanje, nad katerimi bdijo različni možganski dirigenti.


11.01.2024

Prehranski Frankenstein: Skrajno predelana hrana

Povprečen posameznik v industrializiranih državah s hrano letno zaužije osem kilogramov aditivov, kupi pa le dva kilograma moke. Trend prehranjevanja, ki ga narekujeta pomanjkanje časa in velika količina priročnih, za takojšnje zaužitje pripravljenih živilskih izdelkov, gre namreč v smer, ko vedno manj obrokov pripravimo sami. Pri tem zaužijemo vedno več tako imenovane ultraprocesirane hrane, med katero spadajo čips, zamrznjena lazanja, sladke žitarice, rastlinske alternative za sir in meso in podobno. Kako taka hrana vpliva na naše telo in svet okoli nas? Kako jo prepoznati?


04.01.2024

Nismo še videli, česa vsega je zmožno Sonce

Veter, nevihte, kresovi … Vsega tega ne poznamo samo na Zemlji in v njeni atmosferi, ampak tudi na Soncu. In tokrat bomo v Frekvenci X kot sonde opazovali njegovo celotno površje ter ugotavljali, kaj tamkajšnji pojavi pomenijo za življenje na Zemlji.


28.12.2023

Znansopotnika: Marina Dermastia in Tom Turk

V zadnji letošnji Frekvenci X gostimo dva znanstvenika, profesorja, komunikatorja znanosti, strokovna in tudi življenjska sopotnika, ki sta z biologijo in tudi med seboj povezana že več kot 40 let.


14.12.2023

Thomas Dietterich: Pionir strojnega učenja, ki obožuje flamenko

Thomas Dietterich je zaslužni profesor na javni univerzi v Oregonu in pionir strojnega učenja, ki na tem področju raziskuje že od leta 1977. Od nekdaj ga je zanimalo - kako se znanstveniki učijo o svetu? In v kontekstu računalnikov je to vprašanje strojnega učenja. Torej, kako se računalniki učijo o svetu?


06.12.2023

Sindrom prevaranta kot konstrukt sodobne družbe

Impostor syndrome v slovenščini najpogosteje imenujemo sindrom prevaranta, pojavlja se tudi poimenovanje sindrom vsiljivca. Gre za psihološki konstrukt, katerega značilnost so občutki dvomov o svoji lastni sposobnosti, kompetentnosti in inteligentnosti, čeprav objektivni dosežki kažejo nasprotno. Kakšni so znaki in občutki ob tem sindromu, kako je povezan s perfekcionizmom, kaj menijo psihologi in psihiatri, v kolikšni meri gre za konstrukt novodobne družbe kapitalizma in vplivnežev.


Stran 2 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov