Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Super ure. Patrick Gill (NPL)

29.03.2012


Malokdo se zaveda, da sodobni način življenja iz ozadja tiho usmerjajo supernatančne atomske ure, ki so eden najbolj izjemnih dosežkov znanosti in tehnologije. Tako natančno, kot znamo danes meriti čas, verjetno ne zmoremo izmeriti skoraj ničesar drugega.

Revolucija v izdelavi izjemno točnih ur se je začela v drugi polovici prejšnjega stoletja, ko so znanstveniki odkrili, kako je mogoče ob pomoči atomov izredno natančno meriti čas. Leta 1955 je britanski fizik Louis Essen izdelal prvo zanesljivo atomsko uro, ki je zamujala samo eno sekundo na 300 let.

Seveda so kmalu potem atomske ure s svojo nepremagljivo točnostjo postane nov standard v merjenju časa. Naš svet je začel utripati v ritmu atomov. Pri atomskih urah so vlogo mehaničnih nihal, ki odštevajo čas v običajnih urah, prevzeli elektroni, ki v enakomernih časovnih utripih spreminjajo položaj v atomu. Z merjenjem tega plesa elektronov je mogoče osupljivo natančno določiti tiktakanje časa.

Leta 1967 so tako znanstveniki na novo opredelili sekundo kot 9.192.631.770 period sevanja, ki ustrezajo prehodu med hiperfinima ravnema osnovnega stanja atoma cezij-133«. V naslednjih desetletjih so neutrudno izboljševali natančnost atomske ure. Ta se dandanes zmoti samo za kakšno sekundo na reci in piši nekaj milijonov let.

Srce sodobnih atomskih ur so cezijevi atomi, ohlajeni na supernizko temperaturo. In njihova natančnost res ni od muh. Trenutno najbolj točna ura na svetu, imenuje se NPL CsF2, je v britanskem Nacionalnem fizikalnem laboratoriju na robu Londona in se zmoti za manj kot sekundo v nepredstavljivih 138 milijonih let. Zdi se prav neverjetno, da lahko znanstveniki dandanes zgradijo tako točno in dovršeno napravo.

Kakih 200 podobno natančnih atomskih ur v 50 različnih državah skupaj določa mednarodni atomski čas, na podlagi katerega poteka koordinirani univerzalni čas, ki se uporablja za civilno merjenje časa. Kadar koli si nastavite uro, ki vam prehiteva, nazaj na pravilen čas, ki ga predvajajo na primer po radiu, vedite, da ta izvira iz atomskih ur.

Izjemna natančnost sodobnih atomskih ur ni samo lepotnega pomena, ampak je bistvena za brezhibno delovanje našega sveta. Na te ure se zanašajo delovanje interneta, sistemov GPS, oddajanje radijskih in televizijskih valov, bančne transakcije in še kaj bi se našlo. Brez popolnoma točnih ur današnji način življenja tako rekoč ne bi bil možen.

A čeprav so raziskovalci z atomskimi urami dosegli zavidljivo stopnjo natančnosti, nikakor niso prenehali iskati in izdelovati še boljših in točnejših. Leta 2001 so v ameriškem Nacionalnem institutu standardov in tehnologije razvili tako imenovane optične atomske ure, ki so še natančnejše od klasičnih cezijevih atomskih ur. Pravzaprav je supernatančne zanje preskromna beseda.

Ultrasupernatančne optične atomske ure bi lahko namreč podrle vse meje v predstavah o tem, kako točno lahko izmerimo čas. Leta 2010 so isti raziskovalci zgradili prototip optične ure, ki zaostaja ali pridobi le sekundo na osupljivih 3,7 milijarde let. Če bi tako uro zagnali ob začetku vesolja oziroma ob velikem poku, bi do danes zamujala samo 4 sekunde.

Strokovnjaki napovedujejo, da bodo optične ure v naslednjih letih nadomestile trenutne atomske, čeprav si navadni ljudje verjetno težko predstavljajo, zakaj bi potrebovali ure, ki zamujajo le sekundo na nekaj milijard let, ko pa že imamo take, ki zamujajo sekundo na sto milijonov let. Ampak tudi optične atomske ure niso zadnja domislica merilcev časa. Zadnja leta se pojavljajo ideje o še boljših urah. Med take sodijo tako imenovane jedrske in kvantne ure.

Leta 2011 so ameriški fiziki s tehnološkega inštituta v Georgiji izračunali, da bi jedrska ura na podlagi elementa torija zamujala samo sekundo v 200 milijardah let. Pri tem se že poraja vprašanje, ali bo naše vesolje sploh obstajalo toliko časa. Vsekakor se nam torej ni treba bati, da bi zaradi nenatančnih ur v življenju lahko izgubili kakšno sekundo.

INTERVJU:
Prof. Patrick Gill je eden najbolj vrhunskih časomerilcev na svetu. Dela v britanskem laboratoriju za fiziko, kjer skrbi tudi za eno najbolj natančnih super atomskih ur na planetu.

Profesor Gill, kje na svetu trenutno tiktaka najbolj točna atomska ura in kako natančna je?

Situacija je trenutno takšna, da določeno število t. i. nacionalnih standardnih laboratorijev v različnih državah upravlja set najnatančnejših atomskih ur. To so t.i. fontanske cezijeve atomske ure. Zdaj  jih deluje okrog sedem ali osem, nameščene pa so v ZDA, Veliki Britaniji, Franciji, Nemčiji, Italiji in Japonski. Poleg teh ur imajo v mnogih državah še druge, manj natančne atomske ure. Te fontanske cezijeve atomske ure smo razvijali zadnjih 20 let in najboljše lahko merijo čas z zaostankom ene sekunde na 60 milijonov let ali več.

Bi bilo sodobno življenje sploh mogoče brez teh super ur? Zakaj je pomembno, da ura zaostane samo za eno sekundo na nekaj milijonov let?

Da, ena sekunda na 60 milijonov let res ni čas, ki bi se nas dotikal, saj nas zanimajo mnogo krajši intervali – na primer  en dan. Vendar pa obstajajo aplikacije, ki se zanašajo na takšno natančnost. Na najosnovnejšm koncu denimo želiva vedeti, koliko je ura, vendar samo do kakšne minute natančno. Malo večjo natančnost potrebujejo v športu, za kako milisekundo. Še višje so finančne institucije, saj želijo pri borznem poslovanju veliko točnost. Potem je pomembna natančnost pri distribuciji električne energije – to je zahteven časovni problem, zato so pomembne  mikrosekunde. Še dlje pa so satelitska navigacija in naprave v avtomobilih ali telefonih  – zanašajo se na atomske ure v satelitih. Najvišjo natančnost pri merjenju časa pa potrebujejo v visoki znanosti, recimo v sodobni astronomiji, kozmologiji in drugih temeljnih znanstvenih vedah.

Kako zahtevno pa je narediti takšno atomsko uro in koliko približno stane?

Manj natančne atomske ure je mogoče tudi kupiti, za recimo kakih deset tisoč dolarjev. Kupiti je mogoče tudi atomske ure velikosti kosa mila. Če pa govorimo o vrhunskih primarnih standardih, se pravi fontanskih cezijevih atomskih urah – te so  visoke približno 2 metra, v njih sta ultra vakuum in oblak cezijevih atomov, ki so z laserji ohlajeni na okrog -273 stopinj.

Znanstveniki bi radi naredili še natančnejše atomske ure. Kako natančne ure pa je mogoče narediti oziroma kakšne super ure bomo imeli v prihodnosti. In zakaj potrebujemo še natančnejše ure? Ali je res pomembno zaostajanje za eno sekundo v nekaj deset milijonih let ali v nekaj sto milijonih let?

Da, človeku na ulici za to ni mar, v visoki znanosti – kozmologiji, osnovni fiziki in podbno pa je pomembno, izboljšanje natančnosti pri merjenju časa. Torej je to uporabno za visoko znanost, vendar pa ljudje vedno najdejo tudi način za  prilagoditev za bolj tehnološke potrebe. Dober primer tega iz preteklosti je nastanek globalnega navigacijskega sistema GPS, ki so ga  omogočile atomske ure. Kar zadeva izboljšanje natančnosti, pa bi lahko točnost atomskih ure s pomočjo laserske tehnologije trenutno izboljšali še za okrog 100-krat.


Frekvenca X

688 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Super ure. Patrick Gill (NPL)

29.03.2012


Malokdo se zaveda, da sodobni način življenja iz ozadja tiho usmerjajo supernatančne atomske ure, ki so eden najbolj izjemnih dosežkov znanosti in tehnologije. Tako natančno, kot znamo danes meriti čas, verjetno ne zmoremo izmeriti skoraj ničesar drugega.

Revolucija v izdelavi izjemno točnih ur se je začela v drugi polovici prejšnjega stoletja, ko so znanstveniki odkrili, kako je mogoče ob pomoči atomov izredno natančno meriti čas. Leta 1955 je britanski fizik Louis Essen izdelal prvo zanesljivo atomsko uro, ki je zamujala samo eno sekundo na 300 let.

Seveda so kmalu potem atomske ure s svojo nepremagljivo točnostjo postane nov standard v merjenju časa. Naš svet je začel utripati v ritmu atomov. Pri atomskih urah so vlogo mehaničnih nihal, ki odštevajo čas v običajnih urah, prevzeli elektroni, ki v enakomernih časovnih utripih spreminjajo položaj v atomu. Z merjenjem tega plesa elektronov je mogoče osupljivo natančno določiti tiktakanje časa.

Leta 1967 so tako znanstveniki na novo opredelili sekundo kot 9.192.631.770 period sevanja, ki ustrezajo prehodu med hiperfinima ravnema osnovnega stanja atoma cezij-133«. V naslednjih desetletjih so neutrudno izboljševali natančnost atomske ure. Ta se dandanes zmoti samo za kakšno sekundo na reci in piši nekaj milijonov let.

Srce sodobnih atomskih ur so cezijevi atomi, ohlajeni na supernizko temperaturo. In njihova natančnost res ni od muh. Trenutno najbolj točna ura na svetu, imenuje se NPL CsF2, je v britanskem Nacionalnem fizikalnem laboratoriju na robu Londona in se zmoti za manj kot sekundo v nepredstavljivih 138 milijonih let. Zdi se prav neverjetno, da lahko znanstveniki dandanes zgradijo tako točno in dovršeno napravo.

Kakih 200 podobno natančnih atomskih ur v 50 različnih državah skupaj določa mednarodni atomski čas, na podlagi katerega poteka koordinirani univerzalni čas, ki se uporablja za civilno merjenje časa. Kadar koli si nastavite uro, ki vam prehiteva, nazaj na pravilen čas, ki ga predvajajo na primer po radiu, vedite, da ta izvira iz atomskih ur.

Izjemna natančnost sodobnih atomskih ur ni samo lepotnega pomena, ampak je bistvena za brezhibno delovanje našega sveta. Na te ure se zanašajo delovanje interneta, sistemov GPS, oddajanje radijskih in televizijskih valov, bančne transakcije in še kaj bi se našlo. Brez popolnoma točnih ur današnji način življenja tako rekoč ne bi bil možen.

A čeprav so raziskovalci z atomskimi urami dosegli zavidljivo stopnjo natančnosti, nikakor niso prenehali iskati in izdelovati še boljših in točnejših. Leta 2001 so v ameriškem Nacionalnem institutu standardov in tehnologije razvili tako imenovane optične atomske ure, ki so še natančnejše od klasičnih cezijevih atomskih ur. Pravzaprav je supernatančne zanje preskromna beseda.

Ultrasupernatančne optične atomske ure bi lahko namreč podrle vse meje v predstavah o tem, kako točno lahko izmerimo čas. Leta 2010 so isti raziskovalci zgradili prototip optične ure, ki zaostaja ali pridobi le sekundo na osupljivih 3,7 milijarde let. Če bi tako uro zagnali ob začetku vesolja oziroma ob velikem poku, bi do danes zamujala samo 4 sekunde.

Strokovnjaki napovedujejo, da bodo optične ure v naslednjih letih nadomestile trenutne atomske, čeprav si navadni ljudje verjetno težko predstavljajo, zakaj bi potrebovali ure, ki zamujajo le sekundo na nekaj milijard let, ko pa že imamo take, ki zamujajo sekundo na sto milijonov let. Ampak tudi optične atomske ure niso zadnja domislica merilcev časa. Zadnja leta se pojavljajo ideje o še boljših urah. Med take sodijo tako imenovane jedrske in kvantne ure.

Leta 2011 so ameriški fiziki s tehnološkega inštituta v Georgiji izračunali, da bi jedrska ura na podlagi elementa torija zamujala samo sekundo v 200 milijardah let. Pri tem se že poraja vprašanje, ali bo naše vesolje sploh obstajalo toliko časa. Vsekakor se nam torej ni treba bati, da bi zaradi nenatančnih ur v življenju lahko izgubili kakšno sekundo.

INTERVJU:
Prof. Patrick Gill je eden najbolj vrhunskih časomerilcev na svetu. Dela v britanskem laboratoriju za fiziko, kjer skrbi tudi za eno najbolj natančnih super atomskih ur na planetu.

Profesor Gill, kje na svetu trenutno tiktaka najbolj točna atomska ura in kako natančna je?

Situacija je trenutno takšna, da določeno število t. i. nacionalnih standardnih laboratorijev v različnih državah upravlja set najnatančnejših atomskih ur. To so t.i. fontanske cezijeve atomske ure. Zdaj  jih deluje okrog sedem ali osem, nameščene pa so v ZDA, Veliki Britaniji, Franciji, Nemčiji, Italiji in Japonski. Poleg teh ur imajo v mnogih državah še druge, manj natančne atomske ure. Te fontanske cezijeve atomske ure smo razvijali zadnjih 20 let in najboljše lahko merijo čas z zaostankom ene sekunde na 60 milijonov let ali več.

Bi bilo sodobno življenje sploh mogoče brez teh super ur? Zakaj je pomembno, da ura zaostane samo za eno sekundo na nekaj milijonov let?

Da, ena sekunda na 60 milijonov let res ni čas, ki bi se nas dotikal, saj nas zanimajo mnogo krajši intervali – na primer  en dan. Vendar pa obstajajo aplikacije, ki se zanašajo na takšno natančnost. Na najosnovnejšm koncu denimo želiva vedeti, koliko je ura, vendar samo do kakšne minute natančno. Malo večjo natančnost potrebujejo v športu, za kako milisekundo. Še višje so finančne institucije, saj želijo pri borznem poslovanju veliko točnost. Potem je pomembna natančnost pri distribuciji električne energije – to je zahteven časovni problem, zato so pomembne  mikrosekunde. Še dlje pa so satelitska navigacija in naprave v avtomobilih ali telefonih  – zanašajo se na atomske ure v satelitih. Najvišjo natančnost pri merjenju časa pa potrebujejo v visoki znanosti, recimo v sodobni astronomiji, kozmologiji in drugih temeljnih znanstvenih vedah.

Kako zahtevno pa je narediti takšno atomsko uro in koliko približno stane?

Manj natančne atomske ure je mogoče tudi kupiti, za recimo kakih deset tisoč dolarjev. Kupiti je mogoče tudi atomske ure velikosti kosa mila. Če pa govorimo o vrhunskih primarnih standardih, se pravi fontanskih cezijevih atomskih urah – te so  visoke približno 2 metra, v njih sta ultra vakuum in oblak cezijevih atomov, ki so z laserji ohlajeni na okrog -273 stopinj.

Znanstveniki bi radi naredili še natančnejše atomske ure. Kako natančne ure pa je mogoče narediti oziroma kakšne super ure bomo imeli v prihodnosti. In zakaj potrebujemo še natančnejše ure? Ali je res pomembno zaostajanje za eno sekundo v nekaj deset milijonih let ali v nekaj sto milijonih let?

Da, človeku na ulici za to ni mar, v visoki znanosti – kozmologiji, osnovni fiziki in podbno pa je pomembno, izboljšanje natančnosti pri merjenju časa. Torej je to uporabno za visoko znanost, vendar pa ljudje vedno najdejo tudi način za  prilagoditev za bolj tehnološke potrebe. Dober primer tega iz preteklosti je nastanek globalnega navigacijskega sistema GPS, ki so ga  omogočile atomske ure. Kar zadeva izboljšanje natančnosti, pa bi lahko točnost atomskih ure s pomočjo laserske tehnologije trenutno izboljšali še za okrog 100-krat.


25.03.2021

Na valovih odnosov: V digitalnem svetu nihče ni otok

Na kakšnih preizkušnjah so naši možgani in zakaj smo utrujeni od številnih virtualnih interakcij? Kakšna je vloga umetne inteligence in kje lahko nadgradi človeško?


17.03.2021

Na valovih odnosov: Ekstremne razmere

Kako in zakaj se odzivamo v ekstremnih razmerah? Kakšni mehanizmi se sprožajo v možganih? Kako je s stresom in kaj v odnose prinese adrenalin?


11.03.2021

Na valovih odnosov: Realnost pod maskami

Kako nošnja zaščitnih mask vpliva na odnose med ljudmi, kako so se spremenili naši mehanizmi spoznavanja in prepoznavanja? So se naši možgani privadili mask, se jih bodo tudi odvadili?


04.03.2021

Vznik življenja se ni zgodil samo enkrat, ampak večkrat na več krajih

Prof. Lewis Dartnell, avtor knjige Izvori, astrobiolog in komunikator znanosti o tem, kako je naš planet oblikoval človeško zgodovino.


25.02.2021

Skrivnosti prav posebnih zvezd, ki jim pravimo magnetarji

Nedavno je Nasini misiji Fermi LAT uspelo odkriti izbruh te nevtronske zvezde v bližnji galaksiji.


18.02.2021

Astrofotografija za telebane

Tokratno Frekvenco X bi lahko naslovili Fotografski vodnik po galaksiji ali pa kar Astrofotografija za telebane, prvi del. Skupaj se bomo učili o tem, kako potovati po vesolju kar z domačega balkona ali s strehe. Svoje iznajdljive in predvsem zelo cenovno dostopne astrofotografske rešitve bo z nami delil angleški astrofizik Rory Griffin.


11.02.2021

Zatiskanje oči pred izumiranjem

Kako se spopadati z zanikanjem izgube biotske raznovrstnosti*


04.02.2021

Kvantna prihodnost 3/3: Varne komunikacije in nevaren nadzor

Kvantne tehnologije prinašajo mnoge prednosti, a tudi nova etična vprašanja in potencialne nevarnosti. Zaradi njih bomo morali spremeniti številne družbene podsisteme.


28.01.2021

Kvantna prihodnost 2/3: Teleportacija? Tudi to je mogoče!

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


21.01.2021

Kvantna prihodnost 1/3: Prvi koraki do kvantne premoči

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


14.01.2021

V iskanju superprevodnikov, tehnološkega svetega grala

Kaj so superprevodniki, kaj z njimi zmoremo že danes in kaj si lahko z njihovo izpopolnitvijo obetamo? Kličemo tudi enega od avtorjev študije, ki so jo lani uvrstili med ključne znanstvene preboje leta?


07.01.2021

Skrivnosti pod ledom

Pod ledom se skrivajo skrivnosti, ki govorijo o človeški zgodovini in morda tudi prihodnjih pandemijah. A kako dolgo bodo še zaklenjene v led?


30.12.2020

Znanost v letu 2020: Od koronavirusa, vesolja do okoljskih alarmov

Znanost je v letu 2020 prišla izrazito v ospredje. Tja jo je potisnila pandemija, ki je zahtevala znanstvene odgovore in rešitve za ključni zdravstveni problem tega trenutka. Brez dvoma je koronavirus določal prioritete tudi v znanstvenem raziskovanju in hkrati sprožil nekaj velikih sprememb na tem področju. Pa vendar je bilo pestro tudi dogajanje na drugih znanstvenih področjih. V pregledu znanosti v letu 2020 nam bodo Maja Ratej (Val 202), Aljoša Masten (MMC) in Nina Slaček (Prvi in Ars) poleg osrednjih tem – koronavirusa, vesolja ter podnebno-ekološke krize – v pogovoru nanizali tudi prgišče drugih pomembnih prebojev z različnih znanstvenih področij.


30.12.2020

Fizik Jurij Bajc: Tako močnih potresov po svetu letno ni veliko

Po rušilnem potresu na Hrvaškem smo za nekaj pojasnil prosili fizika dr. Jurija Bajca s Pedagoške fakultete v Ljubljani, ki se ukvarja tudi s področjem potresov. Kot pravi, takšni rušilni potresi s tolikšno magnitudo letno na svetu niso pogosti, zgodi se jih le kakšnih sto, na našem območju pa je bila z njim v zadnjem stoletju primerljiva le peščica potresnih sunkov. Za kakšno sproščeno moč je šlo pri tokratnem tresenju tal južno od Zagreba, je tako številčno zaporedje potresov na Balkanu nekaj izrednega ali prej pričakovanega in kakšne potrese sploh imamo na Balkanu, posledica česa so, bo pojasnil na razumljiv in poljuden način. Foto: Bobo


24.12.2020

Božiček pod znanstvenim povečevalnim steklom

Frekvenca X se na predbožični dan odpravlja na potovanje okoli sveta. Ne sama, ampak z Božičkom, njegovimi škrati in seveda z našimi znanstveniki (če seveda pustimo dvom o Božičku ob strani in se prepustimo domišljiji). Skupaj bomo poskušali razvozlati, kako dobremu možu v rdečo-beli opravi, z dolgo belo brado in brki vsako leto uspe pravočasno obdarovati vse otroke in koliko kalorij Božiček pridobi, če v vsaki hiši poje en piškot. Na tej (dolgi) poti pa se bomo ustavili tudi pri božičnem drevescu in preverili, kakšen je evolucijski namen iglic. Ste pripravljeni odkleniti skrivnosti Božičkove znanosti? Če je odgovor da, potem le prisluhnite tokrat praznični Frekvenci X.


17.12.2020

Zaslepljeni od koronakrize pozabljamo na okoljsko

V letu 2020 je veliko pozornosti na področju znanosti prestregel pohod koronavirusa, a v ozadju se pripravlja veliko hujša in bolj dolgoročna nevarnost – okoljska kriza. Zadnji meseci so nam izstavili nove okoljske opomine: od katastrofalnih požarov, velikih orkanov, do tega, da se morska gladina pospešeno dviguje, ledeni pokrov nad Arktiko pa nezadržno krči. Sogovornika klimatologinja dr. Lučka Kajfež Bogat in biokemik dr. Tom Turk opozarjata, da ni več časa za sprenevedanje in da je treba ključne sistemske odločitve začeti sprejemati zdaj. Kmalu bodo namreč spremembe postale nepovratne. V oddaji bomo prelistali tudi odmevno knjigo Davida Attenborougha Življenje na našem planetu – z njo in istoimenskim dokumentarcem je jeseni glasno opozoril, da se je svet znašel v na moč nezavidljivi situaciji in da bomo morali po boju s koronakrizo pokazati še več solidarnosti v soočanju s krizo, ki pesti okolje.


03.12.2020

Misija Gaia: Naša galaksija dobiva rokovski prizvok

Misija Gaia Evropske vesoljske agencija z osupljivo natačnostjo meri velikost naše galaksije in vsega vesolja. Aktualni podatki kažejo na veliko razburkanost in nihanja v naši galaksiji, prof. dr. Tomaž Zwitter pravi, da dogajanje dobiva rokovski prizvok. Komentiramo objavo tretje različice kataloga astronomskih meritev misije Gaia, ki skupaj obsega kar 1,8 milijarde zvezd, njena natančnost pa je primerljiva z merjenjem debeline človeškega lasu čez Atlantik. Za projekt skrbi 500 znanstvenikov, pri obdelavi podatkov imajo pomembno vlogo tudi slovenski strokovnjaki.


26.11.2020

Cepiva in mi: Tekma, kakršne ne pomnimo

Na potovanju po svetu cepiv se bomo v zadnji epizodi serije Cepiva in mi ustavili pri aktualni tekmi, kdo bo prvi priskrbel varno in dovolj učinkovito cepivo proti covidu-19. Evropska komisija je pogodbo o dobavi za zdaj podpisala s šestimi proizvajalci, po najbolj optimističnem scenariju pa naj bi cepiva na evropski trg prišla januarja. Do njih bodo najprej upravičene najranljivejše družbene skupine, o vsem povezanim s cepivom pa bo na voljo tudi namenska aplikacija. V oddaji spoznavamo tudi, kakšen je postopek produkcije cepiva v tovarni in kako cepivo pristojni regulatorni organi sploh registrirajo. Preverili smo tudi, kako bo z njegovo pravično globalno redistribucijo in zagotavljanjem ustreznega transporta, pomudili pa smo se tudi na borzah, kjer so dobre novice o aktualnem cepivu močno prevetrile negativno razpoloženje.


19.11.2020

Cepiva in mi: Fascinantno potovanje do sodobnih cepiv

Potem ko smo v prvem delu miniserije 'Cepiva in mi' cepljenje spoznavali iz zgodovinske perspektive, se bomo v drugem delu spustili na raven molekularne biologije. Cepiva so v zadnjih desetletjih tako izpopolnili, da vse bolje posnemajo delovanje imunskega sistema. O tem pričajo nove vrste cepiv, do katerih se lahko dokopljemo bliskovito; včasih so za to potrebovali desetletja. Kako delujejo cepiva, iz časa so in kako jih dandanes lahko razvijejo tako hitro? Odgovore bomo iskali v novi Frekvenci X.


12.11.2020

Cepiva in mi: Poldruga milijarda življenj!

V tednu, ko so smo dobili prve oprijemljive rezultate o učinkovitosti kandidata za cepivo proti covidu-19, se na Valu 202 obširneje podajamo v svet cepiv. Človek zelo osnovne oblike cepljenja uporablja že več kot tisočletje, raketni pospešek pa je prinesel razvoj mikrobiologije. Cepljenje je v zadnjih 200 letih rešilo do milijardo in pol življenj, v zadnjih letih pa tehnologija razvoja cepiv dobiva še dodaten pospešek. Potem ko so včasih na cepivo čakali po več desetletij, so danes za to potrebni le meseci. O razvoju cepiv, odnosu človeka do cepljenja in o tem, kako cepiva pravzaprav nastanejo, bomo na Valu govorili v okviru posebne miniserije Frekvence X. Cepiva in mi – v vseh preostalih novembrskih četrtkih ob 12h.


Stran 9 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov