Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Teorija relativnosti in nastanek črnih lukenj. dr. Jerome Novák z Observatorija Meudon pri Parizu

05.04.2012


Einsteinova splošna teorija relativnosti bo kmalu praznovala stoletnico. Einstein je že leta 1915 pokazal, da njegova teorija lahko pojasni opazovano sukanje točke, v kateri se planet Merkur najbolj približa Soncu.

Še bolj dramatična potrditev je bilo opazovanje premika zvezd, ki jih vidimo poleg Sonca ob popolnem Sončevem mrku. Angleška kraljeva družba je zato leta 1919 poslala odpravo na Papuo – Novo Gvinejo. Rezultati, ki so se popolnoma ujemali z Einsteinovimi napovedmi, so mu prinesli takojšnjo slavo.

Danes nam po potrditev napovedi teorije ni treba hoditi tja. Splošna relativnost vpliva na naše vsakdanje življenje in na razlage številnih pojavov v vesolju. Kar nekaj primerov, ki jih zdaj povzemamo,  nam je naštel naš gost, dr. Jerome Novak, raziskovalec v laboratoriju Vesolje in teorije pariškega observatorija v Meudonu.

V vesolju je primerov kar veliko, prvo je že vesolje samo in njegovo širjenje. Pred dobrimi 80 leti ga je odkril Edwin P. Hubble in to širjenje je mogoče  razložiti samo s splošno relativnostjo, Newtonova običajna teorija se temu ne prilagodi. S tem v zvezi je tudi pojav, ki se imenuje prasevanje. To je nekakšna prva slika vesolja, elektromagnetno valovanje, ki napolnjuje celotno vesolje. Odkrili so ga že v 60 letih.

Tudi to valovanje je v skladu s tem, kar predvideva teorija splošne relativnosti, in vse to kaže, da tudi zgodovine vesolja sploh ni mogoče razlagati brez Einsteinove teorije. Poleg celotnega vesolja pa poznamo tudi črne luknje ali nevtronske zvezde, ki imajo zelo močno gravitacijsko polje, in tudi teh ni mogoče opisati brez splošne relativnosti, še posebno opazovanja v visokih energijah elektromagnetnega valovanja, kot so rentgenski ali gama žarki.

Einsteinova teorija opisuje zelo močna gravitacijska polja, tako da  je na Zemlji, na kateri je to polje bolj šibko, Newtonova teorija po navadi dovolj točna. V  vsakdanjem življenju  pa je  splošna relativnost navzoča ob pomoči GPS. Premika teh satelitov, ki nam pošiljajo signale, se ne da dobro izračunati v sklopu Newtonove teorije. To pomeni, da bi bile napake položajev teh satelitov, izračunane v okviru Newtonove teorije, prevelike in bi povrhu tega s časom še rastle. To pomeni, da brez splošne relativnosti GPS (Global Positioning System) sploh ne bi deloval in ne bi mogli imeti točnih informacij.

Kljub skladnosti napovedi Einsteinove splošne teorije relativnosti z opazovanji pa jo fiziki ves čas z veliko vnemo preizkušajo. Preverjanje teorij je vedno pomembno; ni dovolj napisati teorijo, tudi če je lepa. Še več zanimanja  je zato, ker za zdaj ni mogoče združiti splošne relativnosti z drugo veliko teorijo fizike 20. stoletja − kvantno mehaniko. Težava je v tem, da nimamo nobenega točnega opisa kvantne gravitacije oziroma nobene teorije za kvantno gravitacijo. Ker teoretična zgradba ni jasna, je treba preizkusiti vse te teorije in tudi splošno relativnost – tako osnove kot podrobnosti – v vseh smereh. Tako fiziki skušajo  najti kakšno slabost ali namig,  kje iskati kvantno teorijo gravitacije.

Na prvi pogled se sicer zdi, da majhne spremembe ne bi smele imeti velikih posledic. Situacija je nekoliko podobna slavnemu, zdaj že rešenemu problemu glede hitrosti nevtrinov, za katere se je zdelo, da gredo malce hitreje od svetlobe in s tem rušijo naše razumevanje sveta.

Vendar so te majhne razlike  pogoste in seveda lahko privedejo do velikih teorij. Tudi teorijo splošne relativnosti je vzpodbudila majhna razlika med opazovanjem gibanja Merkurja in računanjem tega gibanja po Newtonovem zakonu.  Tudi majhna razlika, ki bi bila potrjena − ne tako kot pri nevtrinih, pri katerih se je pokazalo, da je bil problem nekako v meritvi sami − bi lahko, kar zadeva splošno relativnost, nakazovala novo znanstveno revolucijo. Ta mala razlika bi namreč pokazala, v kateri smeri je treba iskati razlago.

Naš gost dr. Jérôme Novak se je pred malo manj kot 40 leti rodil v Araraquari v Braziliji. Astrofiziko je študiral v Parizu in pred 14 leti doktoriral z delom, ki je z numeričnimi tehnikami obravnavalo izvore gravitacijskih valov. To so nihanja prostora, ki nastanejo ob dramatičnih dogodkih, kot so nastanek, zlivanje ali hitro kroženje črnih lukenj in zelo gostih zvezd.

Na podoktorskem izpopolnjevanju v Španiji je raziskoval računalniško modeliranje hidrodinamike v okviru splošne teorije relativnosti. Zdaj je raziskovalec v laboratoriju  Vesolje in teorije pariškega observatorija v Meudonu pri Parizu. Pred kratkim je obiskal raziskovalno skupino na fakulteti za matematiko in fiziko in predaval našim študentom o Einsteinovi splošni teoriji relativnosti in nastajanju črnih lukenj. To je bil tudi povod za naš današnji pogovor.

INTERVJU

Ko govorimo o splošni teoriji relativnosti, lahko rečemo, da nimamo tako izzivalne meritve, kot je bila tista, ki je privedla do trditve o nevtrinih, hitrejših od svetlobe. Pa vendar so v preteklih letih nekateri razmišljali o alternativnih razlagah s skupnim imenom modificirana Newtonova dinamika. Vaše nedavne raziskave so, če prav razumemo, pokazale, da take alternativne razlage niso skladne z gibanjem planetov v našem Osončju. Lahko na kratko razložite svoje in druge rezultate testiranj alternativnih razlag, tako v našem Osončju kot drugod?

Foto: LUTH

Ja, modificirana Newtonova dinamika je zelo uspešna teorija, kar zadeva opis gibanja zvezd okoli jeder galaksij. Po navadi se ljudje ob razlagi sklicujejo na temno snov, ki jo sestavljajo neznani delci in antidelci, ki jih na Zemlji nikakor ne moremo zaznati, niti v Cernu v pospeševalniku LHC (Large Hadron Collider). In ti delci, ki so navzoči v galaksijah, vplivajo na gibanje zvezd. Te se zato gibljejo drugače, kot bi pričakovali. V nasprotju s to sliko, povezano s temno snovjo neznanega izvora, pa modificirana Newtonova dinamika gibanje zvezd lahko razloži brez neznanih delcev, in to je zelo zanimivo. Žal pa smo dokazali, da ta teorija hkrati predvideva spremenjeno gibanje planetov okoli našega Sonca v primeri z Newtonovo teorijo ali tudi splošno relativnostjo. Te razlike je danes možno izmeriti in dani rezultati, predvsem za Jupiter ali Saturn, kažejo, da  predvidevanja modificirane Newtonove dinamike niso skladna z opazovanji. Kaže, da tej teoriji bolj slabo kaže, ali pa jo bo treba še enkrat spremeniti oziroma bolje premisliti. Modificirana Newtonova dinamika je alternativna teorija, ki skuša iti dlje od Newtonove teorije. So pa še druge alternativne teorije, ki so teoretično bolje utemeljene. Tako imenovana tenzorska skalarna teorija, znana tudi kot Brans-Dickova, je splošnejša od preostalih. To je zelo zanimivo, ker se da primerjati splošno relativnost z drugimi teorijami, ki so nekako v isti skupini. Različne teorije primerjajo tudi z drugimi meritvami. Tak preizkus je zelo točna  laserska meritev razdalje med Zemljo in Luno ali pa zelo točna časovna meritev gibanja para zelo zgoščenih zvezd z imenom pulzarji. Vse te meritve so pokazale, da je splošna relativnost najboljša teorija za gravitacijo. Za zelo točno časovno meritev gibanja dveh pulzarjev sta Hussel in Taylor dobila Nobelovo nagrado iz fizike za leto 1993 in s tem sta tudi pokazala, da je splošna relativnost zelo dobro sprejeta.

Preučujete tudi nastanek črnih lukenj. Gre za zelo dramatične dogodke. Vse  se dogaja izjemno hitro, razmere so zelo daleč od izkušenj, ki jih imamo s snovjo na Zemlji. Ste strokovnjak, ki je pomembno prispeval k razvoju računalniških programov za obravnavanje takih pojavov. Lahko pojasnite, v čem je prednost vašega pristopa?  

To je razmeroma nova tema. Začeli smo pred kakim letom in več. V glavnem skušamo razumeti, kako nastane črna luknja iz navadne zvezde – masivne, ampak običajne zvezde, kakršnih na nebu vidimo na stotine. Naš pristop ima dve prednosti. Intenzivno uporabljamo računalnike za skladno rešitev Einsteinovih enačb splošne relativnosti. Problem so namreč računske napake, ki lahko tako narastejo, da je rezultat popolnoma napačen. Matematično smo študirali nov zapis Einsteinovih enačb, ki dajo najstabilnejšo in najtočnejšo rešitev doslej. Lepo opišejo tudi nastanek črne luknje. To je prva prednost. Druga pa je, da pri opisu zvezde, ki se krči v črno luknjo, upoštevamo tudi nastanek novih delcev, kot so recimo pioni. Doslej so pri računih upoštevali samo protone, nevtrone in elektrone, čeprav vemo, da bi pri gostoti in temperaturi snovi, ki se seseda v črno luknjo, morali nastati tudi ti novi delci. To seveda vpliva na proces nastanka črne luknje in opis tega pojava.

Črne luknje v vesolju so danes realnost, potrjena z zelo raznovrstnimi opazovanji. Zato so realnost tudi situacije, ki so včasih sodile le v znanstveno fantastiko. Tako kot vemo, da obstajajo planeti, ki imajo po dve sonci, vemo tudi, da je smiselno razmišljati o vesoljski ladji, ki se bliža črni luknji. Kaj bi videli astronavti na krovu, kako na realnost vplivajo gole singularnosti, ki jih morda dopušča teorija?

Škoda je, da je to radijski intervju in da ne moremo pokazati nekaj slik. To so z računalnikom izračunane sintetične slike, ki kažejo, čemu je podobna črna luknja. Na kratko, na vesoljski ladji bi črno luknjo videli predvsem kot deformacijo zvezdnega ozadja, to se pravi tako, kot če bi bila med to ladjo in zvezdami velikanska leča. Z ladje bi bila zato slika teh zvezd videti deformirana. Če pa je po drugi strani v bližini črne luknje kaj plina, in to se v vesolju pogosto zgodi, ta plin potem pada v črno luknjo in astronavti bi videli, kako pada in pri tem žari. To je nekako slika tega dogodka. Teh primerov je bilo izračunanih že dovolj, da imamo dobro predstavo, kako se to dogaja.

Gola singularnost pa  je nekako to, kar je v črni luknji. Iz navadne črne luknje informacija sploh ne more. Gola singularnost pa bi bila točka, v kateri bi gostota in gravitacijsko polje hkrati postajali neskončno veliki. Te gole singularnosti teorija sicer dopušča, a ob tem tudi kaže, da niso stabilne. Zato bi gole singularnosti izginile, se razpršile ali pa postale črne luknje.

Za zdaj, kot pravi dr. Novak, jih v naravi verjetno ni. Če pa bi kdaj dokazali ali opazili golo singularnost, bi bilo to nekaj zelo čudnega. Ne bi bila deterministična, ne bi mogli predvideti, kakšna informacija prihaja iz te gole singularnosti. S tem je povezana tudi hipoteza kozmične cenzure. Ta hipoteza pravi, da v vesolju ne more biti  golih singularnosti. To je samo hipoteza ali predpostavka, ki ni dokazana. Za zdaj  kaže, da so gole singularnosti nestabilne in zato res ne morejo obstajati.

Najbrž ob črno luknjo zlepa ne bomo trčili, ker je  predaleč. Vendar razmišljanje o takih pojavih pomaga k boljšemu razumevanju razvoja vesolja in našega mesta v njem. To daje Einsteinovi splošni teoriji relativnosti dodatno, kulturno dimenzijo, hkrati pa ob zapletenih in za Zemljane neobičajnih konceptih raziskovalci brusijo pristope, ki so uporabni tudi drugje.

Tudi v Franciji  se pojavlja podoben trend kot pri nas − številni diplomanti in celo doktorji fizike naredijo uspešne kariere na popolnoma drugih področjih, od financ do vodenja podjetij. Matematika in fizika sta  v Franciji na prvem mestu in ju uporabljajo  za selekcijo elite že v srednji šoli, tako da ima veliko pomembnih menedžerjev matematično in  fizikalno kulturo.

Poleg financ se študenti usmerijo tudi drugam. Najbolj originalna sprememba področja se mu je zdela, ko je nekdanji   študent in doktorand v njegovi  skupini postal igralec pokra. Prehod od fizike vse do igranja pokra se mu vendarle zdi seveda malo prevelik.


Frekvenca X

694 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Teorija relativnosti in nastanek črnih lukenj. dr. Jerome Novák z Observatorija Meudon pri Parizu

05.04.2012


Einsteinova splošna teorija relativnosti bo kmalu praznovala stoletnico. Einstein je že leta 1915 pokazal, da njegova teorija lahko pojasni opazovano sukanje točke, v kateri se planet Merkur najbolj približa Soncu.

Še bolj dramatična potrditev je bilo opazovanje premika zvezd, ki jih vidimo poleg Sonca ob popolnem Sončevem mrku. Angleška kraljeva družba je zato leta 1919 poslala odpravo na Papuo – Novo Gvinejo. Rezultati, ki so se popolnoma ujemali z Einsteinovimi napovedmi, so mu prinesli takojšnjo slavo.

Danes nam po potrditev napovedi teorije ni treba hoditi tja. Splošna relativnost vpliva na naše vsakdanje življenje in na razlage številnih pojavov v vesolju. Kar nekaj primerov, ki jih zdaj povzemamo,  nam je naštel naš gost, dr. Jerome Novak, raziskovalec v laboratoriju Vesolje in teorije pariškega observatorija v Meudonu.

V vesolju je primerov kar veliko, prvo je že vesolje samo in njegovo širjenje. Pred dobrimi 80 leti ga je odkril Edwin P. Hubble in to širjenje je mogoče  razložiti samo s splošno relativnostjo, Newtonova običajna teorija se temu ne prilagodi. S tem v zvezi je tudi pojav, ki se imenuje prasevanje. To je nekakšna prva slika vesolja, elektromagnetno valovanje, ki napolnjuje celotno vesolje. Odkrili so ga že v 60 letih.

Tudi to valovanje je v skladu s tem, kar predvideva teorija splošne relativnosti, in vse to kaže, da tudi zgodovine vesolja sploh ni mogoče razlagati brez Einsteinove teorije. Poleg celotnega vesolja pa poznamo tudi črne luknje ali nevtronske zvezde, ki imajo zelo močno gravitacijsko polje, in tudi teh ni mogoče opisati brez splošne relativnosti, še posebno opazovanja v visokih energijah elektromagnetnega valovanja, kot so rentgenski ali gama žarki.

Einsteinova teorija opisuje zelo močna gravitacijska polja, tako da  je na Zemlji, na kateri je to polje bolj šibko, Newtonova teorija po navadi dovolj točna. V  vsakdanjem življenju  pa je  splošna relativnost navzoča ob pomoči GPS. Premika teh satelitov, ki nam pošiljajo signale, se ne da dobro izračunati v sklopu Newtonove teorije. To pomeni, da bi bile napake položajev teh satelitov, izračunane v okviru Newtonove teorije, prevelike in bi povrhu tega s časom še rastle. To pomeni, da brez splošne relativnosti GPS (Global Positioning System) sploh ne bi deloval in ne bi mogli imeti točnih informacij.

Kljub skladnosti napovedi Einsteinove splošne teorije relativnosti z opazovanji pa jo fiziki ves čas z veliko vnemo preizkušajo. Preverjanje teorij je vedno pomembno; ni dovolj napisati teorijo, tudi če je lepa. Še več zanimanja  je zato, ker za zdaj ni mogoče združiti splošne relativnosti z drugo veliko teorijo fizike 20. stoletja − kvantno mehaniko. Težava je v tem, da nimamo nobenega točnega opisa kvantne gravitacije oziroma nobene teorije za kvantno gravitacijo. Ker teoretična zgradba ni jasna, je treba preizkusiti vse te teorije in tudi splošno relativnost – tako osnove kot podrobnosti – v vseh smereh. Tako fiziki skušajo  najti kakšno slabost ali namig,  kje iskati kvantno teorijo gravitacije.

Na prvi pogled se sicer zdi, da majhne spremembe ne bi smele imeti velikih posledic. Situacija je nekoliko podobna slavnemu, zdaj že rešenemu problemu glede hitrosti nevtrinov, za katere se je zdelo, da gredo malce hitreje od svetlobe in s tem rušijo naše razumevanje sveta.

Vendar so te majhne razlike  pogoste in seveda lahko privedejo do velikih teorij. Tudi teorijo splošne relativnosti je vzpodbudila majhna razlika med opazovanjem gibanja Merkurja in računanjem tega gibanja po Newtonovem zakonu.  Tudi majhna razlika, ki bi bila potrjena − ne tako kot pri nevtrinih, pri katerih se je pokazalo, da je bil problem nekako v meritvi sami − bi lahko, kar zadeva splošno relativnost, nakazovala novo znanstveno revolucijo. Ta mala razlika bi namreč pokazala, v kateri smeri je treba iskati razlago.

Naš gost dr. Jérôme Novak se je pred malo manj kot 40 leti rodil v Araraquari v Braziliji. Astrofiziko je študiral v Parizu in pred 14 leti doktoriral z delom, ki je z numeričnimi tehnikami obravnavalo izvore gravitacijskih valov. To so nihanja prostora, ki nastanejo ob dramatičnih dogodkih, kot so nastanek, zlivanje ali hitro kroženje črnih lukenj in zelo gostih zvezd.

Na podoktorskem izpopolnjevanju v Španiji je raziskoval računalniško modeliranje hidrodinamike v okviru splošne teorije relativnosti. Zdaj je raziskovalec v laboratoriju  Vesolje in teorije pariškega observatorija v Meudonu pri Parizu. Pred kratkim je obiskal raziskovalno skupino na fakulteti za matematiko in fiziko in predaval našim študentom o Einsteinovi splošni teoriji relativnosti in nastajanju črnih lukenj. To je bil tudi povod za naš današnji pogovor.

INTERVJU

Ko govorimo o splošni teoriji relativnosti, lahko rečemo, da nimamo tako izzivalne meritve, kot je bila tista, ki je privedla do trditve o nevtrinih, hitrejših od svetlobe. Pa vendar so v preteklih letih nekateri razmišljali o alternativnih razlagah s skupnim imenom modificirana Newtonova dinamika. Vaše nedavne raziskave so, če prav razumemo, pokazale, da take alternativne razlage niso skladne z gibanjem planetov v našem Osončju. Lahko na kratko razložite svoje in druge rezultate testiranj alternativnih razlag, tako v našem Osončju kot drugod?

Foto: LUTH

Ja, modificirana Newtonova dinamika je zelo uspešna teorija, kar zadeva opis gibanja zvezd okoli jeder galaksij. Po navadi se ljudje ob razlagi sklicujejo na temno snov, ki jo sestavljajo neznani delci in antidelci, ki jih na Zemlji nikakor ne moremo zaznati, niti v Cernu v pospeševalniku LHC (Large Hadron Collider). In ti delci, ki so navzoči v galaksijah, vplivajo na gibanje zvezd. Te se zato gibljejo drugače, kot bi pričakovali. V nasprotju s to sliko, povezano s temno snovjo neznanega izvora, pa modificirana Newtonova dinamika gibanje zvezd lahko razloži brez neznanih delcev, in to je zelo zanimivo. Žal pa smo dokazali, da ta teorija hkrati predvideva spremenjeno gibanje planetov okoli našega Sonca v primeri z Newtonovo teorijo ali tudi splošno relativnostjo. Te razlike je danes možno izmeriti in dani rezultati, predvsem za Jupiter ali Saturn, kažejo, da  predvidevanja modificirane Newtonove dinamike niso skladna z opazovanji. Kaže, da tej teoriji bolj slabo kaže, ali pa jo bo treba še enkrat spremeniti oziroma bolje premisliti. Modificirana Newtonova dinamika je alternativna teorija, ki skuša iti dlje od Newtonove teorije. So pa še druge alternativne teorije, ki so teoretično bolje utemeljene. Tako imenovana tenzorska skalarna teorija, znana tudi kot Brans-Dickova, je splošnejša od preostalih. To je zelo zanimivo, ker se da primerjati splošno relativnost z drugimi teorijami, ki so nekako v isti skupini. Različne teorije primerjajo tudi z drugimi meritvami. Tak preizkus je zelo točna  laserska meritev razdalje med Zemljo in Luno ali pa zelo točna časovna meritev gibanja para zelo zgoščenih zvezd z imenom pulzarji. Vse te meritve so pokazale, da je splošna relativnost najboljša teorija za gravitacijo. Za zelo točno časovno meritev gibanja dveh pulzarjev sta Hussel in Taylor dobila Nobelovo nagrado iz fizike za leto 1993 in s tem sta tudi pokazala, da je splošna relativnost zelo dobro sprejeta.

Preučujete tudi nastanek črnih lukenj. Gre za zelo dramatične dogodke. Vse  se dogaja izjemno hitro, razmere so zelo daleč od izkušenj, ki jih imamo s snovjo na Zemlji. Ste strokovnjak, ki je pomembno prispeval k razvoju računalniških programov za obravnavanje takih pojavov. Lahko pojasnite, v čem je prednost vašega pristopa?  

To je razmeroma nova tema. Začeli smo pred kakim letom in več. V glavnem skušamo razumeti, kako nastane črna luknja iz navadne zvezde – masivne, ampak običajne zvezde, kakršnih na nebu vidimo na stotine. Naš pristop ima dve prednosti. Intenzivno uporabljamo računalnike za skladno rešitev Einsteinovih enačb splošne relativnosti. Problem so namreč računske napake, ki lahko tako narastejo, da je rezultat popolnoma napačen. Matematično smo študirali nov zapis Einsteinovih enačb, ki dajo najstabilnejšo in najtočnejšo rešitev doslej. Lepo opišejo tudi nastanek črne luknje. To je prva prednost. Druga pa je, da pri opisu zvezde, ki se krči v črno luknjo, upoštevamo tudi nastanek novih delcev, kot so recimo pioni. Doslej so pri računih upoštevali samo protone, nevtrone in elektrone, čeprav vemo, da bi pri gostoti in temperaturi snovi, ki se seseda v črno luknjo, morali nastati tudi ti novi delci. To seveda vpliva na proces nastanka črne luknje in opis tega pojava.

Črne luknje v vesolju so danes realnost, potrjena z zelo raznovrstnimi opazovanji. Zato so realnost tudi situacije, ki so včasih sodile le v znanstveno fantastiko. Tako kot vemo, da obstajajo planeti, ki imajo po dve sonci, vemo tudi, da je smiselno razmišljati o vesoljski ladji, ki se bliža črni luknji. Kaj bi videli astronavti na krovu, kako na realnost vplivajo gole singularnosti, ki jih morda dopušča teorija?

Škoda je, da je to radijski intervju in da ne moremo pokazati nekaj slik. To so z računalnikom izračunane sintetične slike, ki kažejo, čemu je podobna črna luknja. Na kratko, na vesoljski ladji bi črno luknjo videli predvsem kot deformacijo zvezdnega ozadja, to se pravi tako, kot če bi bila med to ladjo in zvezdami velikanska leča. Z ladje bi bila zato slika teh zvezd videti deformirana. Če pa je po drugi strani v bližini črne luknje kaj plina, in to se v vesolju pogosto zgodi, ta plin potem pada v črno luknjo in astronavti bi videli, kako pada in pri tem žari. To je nekako slika tega dogodka. Teh primerov je bilo izračunanih že dovolj, da imamo dobro predstavo, kako se to dogaja.

Gola singularnost pa  je nekako to, kar je v črni luknji. Iz navadne črne luknje informacija sploh ne more. Gola singularnost pa bi bila točka, v kateri bi gostota in gravitacijsko polje hkrati postajali neskončno veliki. Te gole singularnosti teorija sicer dopušča, a ob tem tudi kaže, da niso stabilne. Zato bi gole singularnosti izginile, se razpršile ali pa postale črne luknje.

Za zdaj, kot pravi dr. Novak, jih v naravi verjetno ni. Če pa bi kdaj dokazali ali opazili golo singularnost, bi bilo to nekaj zelo čudnega. Ne bi bila deterministična, ne bi mogli predvideti, kakšna informacija prihaja iz te gole singularnosti. S tem je povezana tudi hipoteza kozmične cenzure. Ta hipoteza pravi, da v vesolju ne more biti  golih singularnosti. To je samo hipoteza ali predpostavka, ki ni dokazana. Za zdaj  kaže, da so gole singularnosti nestabilne in zato res ne morejo obstajati.

Najbrž ob črno luknjo zlepa ne bomo trčili, ker je  predaleč. Vendar razmišljanje o takih pojavih pomaga k boljšemu razumevanju razvoja vesolja in našega mesta v njem. To daje Einsteinovi splošni teoriji relativnosti dodatno, kulturno dimenzijo, hkrati pa ob zapletenih in za Zemljane neobičajnih konceptih raziskovalci brusijo pristope, ki so uporabni tudi drugje.

Tudi v Franciji  se pojavlja podoben trend kot pri nas − številni diplomanti in celo doktorji fizike naredijo uspešne kariere na popolnoma drugih področjih, od financ do vodenja podjetij. Matematika in fizika sta  v Franciji na prvem mestu in ju uporabljajo  za selekcijo elite že v srednji šoli, tako da ima veliko pomembnih menedžerjev matematično in  fizikalno kulturo.

Poleg financ se študenti usmerijo tudi drugam. Najbolj originalna sprememba področja se mu je zdela, ko je nekdanji   študent in doktorand v njegovi  skupini postal igralec pokra. Prehod od fizike vse do igranja pokra se mu vendarle zdi seveda malo prevelik.


02.03.2017

Zapleteno rojevanje vremenske napovedi

Da nastane vremenska napoved, ni dovolj le pogled v nebo. Za sodobne vremenske napovedi je treba dobiti velikanske količine podatkov. Te potem analizirajo izjemno zmogljivi računalniki, ki lahko le v pičlih nekaj sekundah postrežejo s prvimi oprijemljivimi podatki in vremenskimi slikami, te pa nato v vsem razumljivo govorico prevedejo dežurni prognostiki. Po tej zapleteni poti rojevanja vremenske napovedi se danes podaja Frekvenca X.


23.02.2017

Privlačnost nasilja na zaslonih

Nasilje v tradicionalnih in novih medijih je vseprisotno. O tem, da vzbuja pozornost, ni dvoma. A kakšni so v resnici naši odzivi na travmatične dogodke, ki jih vidimo na zaslonu? Kako je potreba po ogledu nasilnega dejanja povezana s človeško zmožnostjo predvidevanja prihodnosti? Zakaj sploh gledamo nasilne in krvave filme? Se s prihodom spletnih družabnih omrežij res postavljajo nova pravila igre in kako spletna anonimnost spreminja vzorce našega vedenja? Med iskanjem vzrokov za privlačnost nasilja na zaslonu gre Frekvenca X med krdelo levov, v gladiatorsko areno, hollywoodske studie z začetka 20. stoletja in na družabna omrežja danes vseobsegajočega svetovnega spleta. Gosti: Aleksander Zadel, psiholog Dr. Rajko Muršič, antropolog, Filozofska fakulteta UL Dr. Peter Stanković, kulturolog, Fakulteta za družbene vede UL


16.02.2017

Od kod je na Zemljo prišla voda?

V teh dneh, ko z neba pada voda zdaj v kapljicah zdaj v snežinkah, se bomo v Frekvenci X vprašali, od kod neki se je vsa ta voda sploh vzela. Da je Zemlja Modri planet, torej polna vode, vira življenja, se zdi samoumevno. Pa ni čisto tako. Če je vir življenja voda, kaj je vir vode?


09.02.2017

Večno mladi in zdravi?

Starejši si, boljši si. Tako kot vino. Kje pa, tole že dolgo ne velja več. Če je sploh kdaj veljalo. Ljudje si želimo biti večno mladi že desetletja. Kaj desetletja, stoletja, tisočletja. Že Grki so imeli boginjo mladosti Hebo, ki je stregla nektar bogovom na Olimpu in imela moč, da je nekomu podelila večno mladost. Iskanje recepta čudežnega napitka, ki bi nas odrešil muk staranja, se seveda ni posrečilo v obdobju našega življenja, mitološke zgodbe so sicer zgodbe, realnost pa je napredna medicina, ki je vse bliže tako imenovanemu vrelcu mladosti.


02.02.2017

Kdaj in kaj se je zgodilo?

Dober mesec je minil, kar smo začeli z novo shemo delitve časa, kot rečemo koledarju. V Frekvenci X smo tokrat v čas umeščali zgodovinske dogodke in najdbe, preverili, kako so se širile novice in se spraševali, na kakšen način so na zgodovino vplivali mrki, kako so jih beležili, napovedovali, o njih poročali ter kako nam pomagajo datirati stare kronike.


26.01.2017

Večjezičnost otrok

Otroci se začnejo govora učiti že takoj ob rojstvu, najprej samo poslušajo in analizirajo glasove, ki jih slišijo. Po šestem mesecu začnejo spuščati glasove, prve besede izrečejo po prvem letu starosti. Kaj se dogaja v možganih otrok, kako se prilagodijo različnim dražljajem in zakaj so se sposobni naučiti več različnih jezikov hkrati? Preverjamo v večjezičnih družinah, na mednarodni šoli in se pogovarjamo s slovensko nevroznanstvenico dr. Najo Ferjan Ramirez.


19.01.2017

Podatkovno rudarjenje na družbenih omrežjih

Morda se vam zdi, da vaši vedri tviti in godrnjanje na Facebooku ne zanimajo nikogar razen vaših prijateljev, a se motite. S pojavom družabnih omrežij, na katerih pogosto nekritično delimo svoje misli, so družboslovne znanosti prvič v zgodovini dobile vpogled v glave več milijard ljudi. Odprle so se povsem nove možnosti za raziskave in tudi zlorabo podatkov.


12.01.2017

Paraliziran človek spet čuti dotik

Z vsadki v senzoričnem delu možganske skorje lahko paraliziran človek pridobi senzorično povratno informacijo iz roke in tisto, česar se dotakne, dejansko čuti. Kako je to mogoče in do kam sega komunikacija med človeškim telesom in robotskimi udi, smo preverili v oddaji Frekvenca X. Sodelovali so: dr. Michael Boninger, Univerza v Pittsburgu dr. Marko Munih, Fakulteta za elektrotehniko Nathan Copeland, kvadriplegik Daniele Bellini, amputiranec


05.01.2017

Na robu znanosti

Rjave, zelene ali modre oči? Če bi imeli možnost poseči v genski material, bi si res želeli vplivati na lastnosti vašega sina ali hčere? Etične dileme so v sodobni znanosti vse bolj pogoste, meje pa vse bolj zabrisane. Pogledujemo v prihodnost in k robovom znanosti – kaj prinašajo prihodnja desetletja, kaj je realno mogoče in kaj bo še vedno znanstvena fantastika, kako bo spremenjeni svet (rast prebivalstva, podnebne spremembe, izumiranja vrst) vplival na odpiranje znanosti, kakšno moč ima znanstveni dumping in kako se z izzivi soočati z glavo in ne s populizmom. Sogovorniki: dr. Andrej Prša, dr. Toni Pustovrh, dr. Anže Županič in dr. Radovan Komel.


29.12.2016

Znanstveno leto 2016

Leto 2016 je ubiralo svojstveno pot tudi na znanstvenem področju. Na področjih genetike, biologije in astronomije so se vrstila nova odkritja, v okoljskih znanostih so deževala še resnejša opozorila, svet je solidarno strnil vrste v boju proti razsajanju virusa zika, stroji pa so človeku zabili še en gol. V 2016-em smo segli dlje v preteklost in globlje v do zdaj nepojasnjene skrivnosti človeka. Skozi znanstveni izbor ekipe oddaje Frekvenca X vas vodita Maja Ratej in Luka Hvalc.


15.12.2016

Skrivnostna zvezda

Pred dobrim letom je ameriška astronomka dr. Tabetha Boyajian s sodelavci objavila članek, v katerem je predstavila nenavadne lastnosti zvezde KIC 9462852, ki so jo opazovali z Nasinim satelitom Kepler. Naslov njenega članka: "Kje je svetloba?" še vedno nima zanesljivega odgovora.


08.12.2016

Živalski strupi

V naravi je več kot 170 tisoč živali, ki za lov ali obrambo ali druge namene uporabljajo strupe, nekateri so tako močni, da so lahko že v zelo majhnih odmerkih usodni za človeka. Najbolj kompleksni in tudi najnevarnejši so prav strupi kač, ki prizadenejo žrtvin živčni, mišični ali krvožilni sistem, nekatere kače, na primer južnoameriška suličarka, pa lahko izzovejo strahotno odmiranje tkiv. V tokratni Frekvenci X se podajamo v zanimiv svet živalskih strupov. Ugotavljamo tudi, da protistrupov, na primer proti ugrizu modrasa, na trgu sploh ni več, odstiramo pa tudi, kako pomembna zdravila, ki dandanes rešujejo na milijone življenj, temeljijo prav na kačjem in drugih strupih.


01.12.2016

Novo zdravilo uniči virus HIV v celicah

Ob dnevu boja proti AIDSu se bomo spomnili, kdo je bil grešni kozel, ki so ga pred več kot tridesetimi leti obtožili, da je v Združene države prinesel virus HIV, kje se je vse začelo in kakšne rezultate dajejo trenutne raziskave na tem področju. Znastveniki, med njimi tudi dr. Lucy Dorrell z oxfordske univerze, so razvili novo zdravilo, ki uniči virus HIV v celicah.


24.11.2016

Sočutje

Glede na to, kako kratka so obdobja miru v zgodovini človeštva – če lahko o njih sploh govorimo – so sodobna dognanja nevroloških znanosti o določenih vidikih našega čutenja fascinantna. Nekatere najdbe namreč potrjujejo tezo, da se ljudem nasilje fizično upira. Verjetno ima s tem kaj opraviti dejstvo, da smo zaradi svoje biološke zasnove nagnjeni k sočutju. V naših možganih, pa tudi možganih nekaterih živali – se skrivajo tako imenovane zrcalne nevronske celice. Ti nevroni takrat, ko opazujemo določeno početje nekoga – na primer če se udari v koleno – sprožijo enake signale kot nevroni v možganih opazovanega. Kljub temu da smo se ljudje skozi evolucijo naučili sočutje učinkovito zatirati, smo po naravi empatični. Novodobna znanost torej v precejšnji meri pritrjuje slutnjam, ki so jih izrazili že nekateri starodavni filozofi. Gosti: Dr. Tomaž Grušovnik, docent na Univerzi za Primorskem Dr. Lenart Škof, religiolog Dr. Zvezdan Pirtošek, nevrolog


17.11.2016

Vpliv bakterij na živali in ljudi

Slovenski biologi so odkrili, da imajo bakterije vpliv na razmnoževanje pajkov. Kako vplivajo na obnašanje drugih živali, je lahko morda od bakterij celo odvisno obnašanje ljudi? Gostji: Doc. dr. Simona Kralj Fišer in Dr. Alanna Collen.


10.11.2016

V žarišču potresov

Potresi, ki neprestano nastajajo na vsej zemeljski krogli, so neizčrpen vir znanstvenih raziskovanj, v katerih ostaja nerešenih še veliko ugank. Vzporednico zemeljski seizmologiji, ki s pomočjo potresnih valov razkriva notranjost Zemlje, bomo potegnili tudi s preostalimi planeti v Osončju in celo z zvezdami, kjer v okviru astroseizmologije preučujejo širjenje zvočnih valov, ki podobno kot tresenje na Zemlji, veliko pove o njihovi notranjosti in starosti.


03.11.2016

Tudi plemenite kovine se da reciklirati zeleno

Lani smo na svetu proizvedli več kot 42 milijonov ton odpadne elektronske opreme. Do leta 2018 naj bi se ta številka povečala na 50 milijonov ton. Velik delež e-odpadkov konča na odlagališčih držav tretjega sveta, kar številni plačajo tudi z zdravjem. Ena od komponent, ki jo zavržemo z e-odpadki, ki kot surovina hitro hlapi, je platina. Raziskovalec s Kemijskega inštituta dr. Nejc Hodnik je pred kratkim razvil način zelenega recikliranja te plemenite kovine in s tem nakazal pot, kako lahko k problematiki e-odpadkov pristopamo bolj odgovorno in z učinkovitimi rešitvami.


27.10.2016

Vonj po kavi in zlati stafilokoki

Morda res še ne diši po zimi, a prihajajo dnevi, ko marsikdo ne bo vohal ničesar. V Frekvenci X smo, preden se v njih naberejo prekomerne količine sluzi, odprli nosove in se prepustili zaznavanju vonjav.


20.10.2016

Uganke

Deset in deset ni dvajset. Če dodamo še 50, pa je enajst. Kaj je to? Z njimi smo se srečali že v otroštvu, z njimi se srečujemo v odrasli dobi in tudi v vsakdanjem življenju. Uganke so z nami že tisočletja, poznali so jih že stari Babilonci, Asirci in drugi, v našem okolju je gotovo najbolj znana med prastarimi ugankami biblična Samsonova uganka. Najsi bodo matematične ali besedne, rešljive ali celo nerešljive, imamo jih radi.


13.10.2016

Vladavina prepričevalcev

Živimo v dobi, ki jo obvladujejo prikriti vplivi na mnenje ljudi. Prepričevalske trike nam servirajo politiki, poslovneži, marketingarji, zavarovalniški agentje, morda celo naši šefi … Kako jih prepoznati in kako se z njimi konstruktivno soočati? Gostje: dr. James Garvey, filozof, avtor knjige Prepričevalci; dr.Stojan Pelko, nekdanji oglaševalec, publicist; Boštjan Videmšek, novinar Dela, protivojni poročevalec.


Stran 18 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov