Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Fizika čarobnih kvarkov

18.06.2015

Tokrat smo se spustili v najnižje nadstropje narave, med njene osnovne gradnike. Gostili smo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožef Štefan v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Tsukubi raziskuje doslej neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki. Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je bil gost v Frekvenci X na Valu 202.

Spustili smo se v najnižje nadstropje narave, med njene osnovne gradnike. Gostimo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožefa Stefana v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Cukubi raziskuje do zdaj neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki.

Detektor Belle ob razgradnji

foto: Osebni arhiv

Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev, iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je gost  Frekvence X.

INTERVJU

Poganjanje tako zapletenih poskusov premika meje v fiziki, inženirstvu, računalništvu in celo menedžmentu. Gotovo to lahko ilustrirate s kakšnim zanimivim primerom?

Res je. V pospeševalnikih in detektorjih delcev se dandanes uporabljajo nove tehnologije, pogosto še nepreverjene, ki pa čez čas precej pogosto najdejo aplikativno vrednost na drugih področjih, denimo v medicini in drugje. Recimo za veliki hadronski trkalnik, ki deluje v Ženevi, so za superprevodne magnete uporabili zelo tanke žičke iz niobija in titana, vsaka od njih je tanjša od človeškega lasu. Če bi vse te žičke postavili drugo za drugo, bi jih bilo za šest razdalj do Sonca in nazaj. Enake oziroma podobne superprevodne magnete bodo uporabljali tudi v fuzijskem reaktorju ITER, za katerega človeštvo upa, da bo odgovoril na vprašanje preskrbe z energijo za naslednje stoletje in še dlje.

Mogoče nekoliko bolj zabavna zgodba: pred  časom, no, že kar pred nekaj leti, ko smo po poletnem remontu skušali zagnati trkalnik LEP – to je bil trkalnik, ki je deloval v istem podzemnem predoru, kot dandanes deluje veliki hadronski trkalnik – nam nikakor ni uspelo pospešiti žarkov do želenih energij. V trenutku, ko so se delci znašli v tem pospeševalniku, so na določenem delu izginili. Po nekaj dneh ugotavljanja, kaj bi lahko bilo narobe, ni bilo druge rešitve, kot da spet ustavimo pospeševalnik in pošljemo tehnike pogledat, kaj se dogaja. Ko so pospeševalnik odprli na mestu, kjer so se delci izgubljali, so našli prazno steklenico pijače, ki jo je eden od prejšnjih tehnikov pustil tam. To nam seveda potrjuje, da je vsa tehnologija še vedno odvisna od človeškega dela.

Naj dam kot primer: skupina znanstvenikov, ki je zbrana okoli detektorja Atlas na velikem hadronskem trkalniku, je sestavljena iz ljudi s prav vseh celin,  razen z Antarktike, kar dobesedno pomeni, da ta eksperiment nikoli ne spi, saj je v vsakem trenutku na Zemlji nekaj članov te skupine, torej imajo dan, da lahko pomagajo pri obratovanju tega pospeševalnika. Tehnologija oziroma načini za zagotavljanje delovanja teh zapletenih naprav so tako dejansko odvisni od zelo usklajenega dela tisočerih znanstvenikov v taki skupini.

V minulega pol stoletja ste fiziki odkrili vrsto osnovnih delcev, ki razložijo naravo treh  osnovnih sil v naravi. Tem delcem pripisujete zanimive lastnosti, kot so barva, čudnost, celo lepota, čar in okus. Se ti pojmi povezujejo s kakšnimi preprostimi pravili, ki nam povedo, kaj je v naravi dovoljeno in kaj ne?

Vsi ti pojmi, ki jih omenjate, označujejo različne lastnosti teh osnovnih delcev, za katere smo si izmislili res nekoliko čudna poimenovanja. Te lastnosti osnovnih delcev pa so povezane z načinom, kako med seboj interagirajo ali po domače povedano, kakšne sile med seboj občutijo. Te sile seveda vodijo v nekatere dovoljene ali nedovoljene primere v naravi, ki pa niso povsem preprosti. Naj dam primer: omenili ste barvo. Kvarki, ki sestavljajo recimo protone, ti so gradniki atomskih jeder, nosijo različne barve. Vendar kvarki, ki sestavljajo protone, morajo imeti vedno tako barvo, da če bi zmešali te barve, bi dobili belo barvo. Drugačni kvarki ne morejo sestavljati protona in drugih težjih delcev. Pri tem se je treba seveda zavedati, da je barva v tem primeru samo poimenovanje oziroma celo metafora za neko lastnost teh osnovnih delcev. V resnici seveda ti kvarki niso pobarvani z različnimi barvami. Čarobnost je tudi lastnost ene od vrst izmed šestih kvarkov, ki jih poznamo. Drugi imajo še druge čudne lastnosti, ki jih poimenujemo lepota in tako naprej.

Je torej poimenovanje le posledica trenutnega navdiha  ljudi, ki so odkrili določene lastnosti?

Že sama beseda kvarki izhaja iz knjige Jamesa Joyca in sama po sebi, kot je že Joyce nekoč rekel, ne pomeni nič. V tem smislu torej ne smemo razumeti dobesedno teh lastnosti, kot strokovno pravimo, kvantnih števil, da so določeni kvarki res čarobni, imajo pa določeno lastnost, ki ji rečemo čarobnost.

Profesor Golob, vrsto let že sodelujete v eksperimentu KEK na Japonskem. Kako lahko te raziskave pripomorejo k izpopolnitvi naše slike o osnovnih delcih in interakcijah v naravi?

Konkretno z eksperimentom, pri katerem sodelujem na Japonskem, merimo posebno lastnost, eno izmed osnovnih sil – imenujemo jo šibka sila –, ki je nekoliko drugačna od drugih sil v smislu, da če vse delce zamenjamo z antidelci, potem se izkaže, da lastnosti te sile niso več povsem enake. Po drugi strani je močna sila, elektromagnetna sila, ki jo poznamo tudi iz vsakdanjega življenja, simetrična na tako zamenjavo. Ta drobna asimetrija, če tako rečem, pa ima pri šibki interakciji gromozanske posledice. Posledica tega je namreč, da je naše celotno vesolje sestavljeno iz snovi, ne iz antisnovi, se pravi iz delcev in ne iz antidelcev. Torej so v razvoju vesolja zaradi te lastnosti te sile tako rekoč vsa antisnov oziroma antidelci v razvoju vesolja izginili, se anihirali, kot temu rečemo, ostali pa so samo delci. Če se nekoliko pošalim, je ta drobna lastnost te interakcije odgovorna za to, da smo ljudje, ne pa antiljudje. Po drugi strani je pa res, da ko opravimo podrobnejše izračune, ugotovimo, da je ta asimetrija, opazna na ravni subatomskih delcev, še vedno premajhna, da bi razložila tako rekoč popolno prevlado snovi nad antisnovjo v vesolju. Iz tega sklepamo, da morajo obstajati doslej neznani delci in procesi, ki to asimetrijo ojačajo. Seveda je naša želja, da bi te nove procese, nove delce odkrili.


Zadnje čase se veliko govori o odkritju še neznanega delca, iz katerega naj bi bila temna snov, ki je v vesolju v večini. Kaj poleg odkritja tega delca še manjka naši trenutni standardni sliki subatomskega sveta?

 Da, približno pet odstotkov vesolja, kot danes vemo, sestavlja snov, taka, kot jo poznamo, približno 25 % vesolja sestavlja tako imenovana temna snov, 70 % vesolja pa tako imenovana temna energija. Kaj pomeni pridevnik temna v izrazu temna snov? To pomeni, da ne interagira oziroma ne sodeluje z drugo snovjo s pomočjo šibke, elektromagnetne močne interakcije na enak način kot snov, ki nam je znana. Občuti pa gravitacijsko interakcijo in zato pravzaprav vemo, da temna snov obstaja. Seveda je temna snov pojem, ki ga skušamo razumeti, se pravi, da skušamo ugotoviti, iz česa je sestavljena. Pred časom smo upali, verjeli, da bi lahko bila sestavljena iz nevtrinov, to so delci, ki jih dandanes dokaj dobro poznamo, poznamo njihove lastnosti. No, izkazalo se je, da je gostota nevtrinov v vesolju premajhna, da bi ti sestavljali to temno snov. Potem pa pridemo počasi v škripce. Trenutna teorija osnovnih sil med delci, ki je eksperimentalno zelo dobro preverjena  in jo imenujemo standardni model, namreč ne vsebuje drugih delcev, ki bi glede na svoje lastnosti lahko bili kandidati za to, da sestavljajo temno snov. Seveda obstajajo druge teorije, na primer supersimetrične teorije, ki pa predvidevajo obstoj drugih delcev, ki za zdaj niso še eksperimentalno potrjeni in med njimi je kar nekaj kandidatov, ki bi lahko sestavljali temno snov. Načinov možnega odkritja takih delcev je več: ena možnost je recimo v velikem hadronskem trkalniku v evropskem laboratoriju za fiziko delcev v Ženevi, kjer bi pri zelo visokih energijah trkov med protoni tvorili tudi take delce, za katere verjamemo, da so relativno težki. Druga možnost je, da opazimo njihov vpliv na procese pri nižjih energijah, za kar pa je treba te procese izmeriti z do zdaj nepredstavljivo natančnostjo, da opazimo ta majhen učinek teh do zdaj neopaženih delcev. Ta pristop uporabljamo oziroma ga nameravamo uporabiti v eksperimentu na Japonskem.

Če smo prav prešteli, trenutno poznamo 61 osnovnih delcev. Se ne zdi nenavadno, da bi bilo osnovno nadstropje narave tako zapleteno? Je upati, da je kje nižje še bolj osnovna raven, na kateri bi bilo le nekaj še osnovnejših gradnikov?

 Število delcev, ki jih danes štejemo za osnovne – pa dam osnovne v narekovaje, recimo nedeljive – je manjše, rekel bi sedemnajst, če sem pravilno preštel. Seveda ima vsak od teh delcev lahko le različne lastnosti, a to še ni razlog, da bi ga potem šteli za drugačen osnovni delec. Imate pa povsem prav, standardni model kot teorija, ki jo danes sprejemamo kot opis osnovnih sil med delci, ima veliko pomanjkljivosti. Ena izmed teh bi lahko bila, da je število osnovnih delcev preveliko. Pa to ni tista največja pomanjkljivost, zaradi katere nas večina znanstvenikov meni, da standardni model ni končna teorija vsega, če tako rečem. Stari Grki so verjeli, da je svet sestavljen iz ognja, vode, zemlje in zraka. Več stoletij pozneje je Mendelejev postavil periodni sistem elementov in izkazalo se je, da tudi atomi v tem periodnem sistemu niso nedeljivi, niso osnovni delci. Danes vemo, da so atomska jedra sestavljena iz protonov in nevtronov, pa tudi protoni in nevtroni se naprej delijo oziroma so sestavljeni iz kvarkov. Z drugimi besedami, zavedati se moramo, da je naše razumevanje, kaj je osnovna sestava snovi, pogojeno z eksperimentalnimi možnostmi, ki so nam na voljo. Trenutno uporabljamo najmočnejše mikroskope, mikroskope v narekovajih, to so pospeševalniki delcev in pri do zdaj dosegljivih energijah nam omogočajo vpogled v sestavne dele snovi, ki so veliki recimo deset na minus petnajsto metra. Seveda ni nikjer zagotovila, da pri še bolj zmogljivih eksperimentalnih napravah ne bi nekoč ugotovili, da so tudi tisti delci, ki jih danes štejemo za nesestavljene,  v resnici strukturirani, da imajo sestavo. Dejstvo pa je, da dandanes vsi eksperimentalni dokazi, ki so na voljo, kažejo na to, da so ti delci, ki jih danes imenujemo osnovni delci, nesestavljeni. Sklepati o čemer koli drugem brez podlage eksperimentalnih dejstev je pa seveda stvar filozofije  oziroma subjektivnega pristopa k naravi.

Z novim detektorjem, ki bo začel zajemati podatke v prihodnjih letih, bo mogoče odkrivati stvari z desetkrat večjo natančnostjo, kot je bilo mogoče do zdaj. Bi lahko te raziskave spremenile naš pogled na svet?

Raziskave, ki jih opravljamo ne samo na ravni recimo eksperimentalne fizike osnovnih delcev ali katere druge fizike, lahko do neke mere močno spremenijo naš pogled na svet. Poglejmo  v zgodovino: razvoj kvantne mehanike je, najsi se tega zavedamo ali ne, močno spremenil človeški pogled na življenje in na svet okoli nas. Če nekoliko karikiram, možnosti obstajajo  oziroma obstajajo teorije, ki pravijo, da ne živimo v prostoru, ki je sestavljen iz treh prostorskih dimenzij in ene časovne, ampak da živimo v prostoru, ki ima veliko več dimenzij, pa jih ne opazimo. To si lahko predstavljamo tako, kot da bi bili mravlje na listu papirja. Mravlja se pomika gor in dol v dveh dimenzijah, pa se pravzaprav ne zaveda, da živi v prostoru, ki je sestavljen iz treh dimenzij. To bi bilo verjetno precej spremenjeno gledanje na svet, v katerem živimo, in drugačno razumevanje tega sveta.

 


Frekvenca X

688 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Fizika čarobnih kvarkov

18.06.2015

Tokrat smo se spustili v najnižje nadstropje narave, med njene osnovne gradnike. Gostili smo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožef Štefan v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Tsukubi raziskuje doslej neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki. Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je bil gost v Frekvenci X na Valu 202.

Spustili smo se v najnižje nadstropje narave, med njene osnovne gradnike. Gostimo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožefa Stefana v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Cukubi raziskuje do zdaj neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki.

Detektor Belle ob razgradnji

foto: Osebni arhiv

Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev, iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je gost  Frekvence X.

INTERVJU

Poganjanje tako zapletenih poskusov premika meje v fiziki, inženirstvu, računalništvu in celo menedžmentu. Gotovo to lahko ilustrirate s kakšnim zanimivim primerom?

Res je. V pospeševalnikih in detektorjih delcev se dandanes uporabljajo nove tehnologije, pogosto še nepreverjene, ki pa čez čas precej pogosto najdejo aplikativno vrednost na drugih področjih, denimo v medicini in drugje. Recimo za veliki hadronski trkalnik, ki deluje v Ženevi, so za superprevodne magnete uporabili zelo tanke žičke iz niobija in titana, vsaka od njih je tanjša od človeškega lasu. Če bi vse te žičke postavili drugo za drugo, bi jih bilo za šest razdalj do Sonca in nazaj. Enake oziroma podobne superprevodne magnete bodo uporabljali tudi v fuzijskem reaktorju ITER, za katerega človeštvo upa, da bo odgovoril na vprašanje preskrbe z energijo za naslednje stoletje in še dlje.

Mogoče nekoliko bolj zabavna zgodba: pred  časom, no, že kar pred nekaj leti, ko smo po poletnem remontu skušali zagnati trkalnik LEP – to je bil trkalnik, ki je deloval v istem podzemnem predoru, kot dandanes deluje veliki hadronski trkalnik – nam nikakor ni uspelo pospešiti žarkov do želenih energij. V trenutku, ko so se delci znašli v tem pospeševalniku, so na določenem delu izginili. Po nekaj dneh ugotavljanja, kaj bi lahko bilo narobe, ni bilo druge rešitve, kot da spet ustavimo pospeševalnik in pošljemo tehnike pogledat, kaj se dogaja. Ko so pospeševalnik odprli na mestu, kjer so se delci izgubljali, so našli prazno steklenico pijače, ki jo je eden od prejšnjih tehnikov pustil tam. To nam seveda potrjuje, da je vsa tehnologija še vedno odvisna od človeškega dela.

Naj dam kot primer: skupina znanstvenikov, ki je zbrana okoli detektorja Atlas na velikem hadronskem trkalniku, je sestavljena iz ljudi s prav vseh celin,  razen z Antarktike, kar dobesedno pomeni, da ta eksperiment nikoli ne spi, saj je v vsakem trenutku na Zemlji nekaj članov te skupine, torej imajo dan, da lahko pomagajo pri obratovanju tega pospeševalnika. Tehnologija oziroma načini za zagotavljanje delovanja teh zapletenih naprav so tako dejansko odvisni od zelo usklajenega dela tisočerih znanstvenikov v taki skupini.

V minulega pol stoletja ste fiziki odkrili vrsto osnovnih delcev, ki razložijo naravo treh  osnovnih sil v naravi. Tem delcem pripisujete zanimive lastnosti, kot so barva, čudnost, celo lepota, čar in okus. Se ti pojmi povezujejo s kakšnimi preprostimi pravili, ki nam povedo, kaj je v naravi dovoljeno in kaj ne?

Vsi ti pojmi, ki jih omenjate, označujejo različne lastnosti teh osnovnih delcev, za katere smo si izmislili res nekoliko čudna poimenovanja. Te lastnosti osnovnih delcev pa so povezane z načinom, kako med seboj interagirajo ali po domače povedano, kakšne sile med seboj občutijo. Te sile seveda vodijo v nekatere dovoljene ali nedovoljene primere v naravi, ki pa niso povsem preprosti. Naj dam primer: omenili ste barvo. Kvarki, ki sestavljajo recimo protone, ti so gradniki atomskih jeder, nosijo različne barve. Vendar kvarki, ki sestavljajo protone, morajo imeti vedno tako barvo, da če bi zmešali te barve, bi dobili belo barvo. Drugačni kvarki ne morejo sestavljati protona in drugih težjih delcev. Pri tem se je treba seveda zavedati, da je barva v tem primeru samo poimenovanje oziroma celo metafora za neko lastnost teh osnovnih delcev. V resnici seveda ti kvarki niso pobarvani z različnimi barvami. Čarobnost je tudi lastnost ene od vrst izmed šestih kvarkov, ki jih poznamo. Drugi imajo še druge čudne lastnosti, ki jih poimenujemo lepota in tako naprej.

Je torej poimenovanje le posledica trenutnega navdiha  ljudi, ki so odkrili določene lastnosti?

Že sama beseda kvarki izhaja iz knjige Jamesa Joyca in sama po sebi, kot je že Joyce nekoč rekel, ne pomeni nič. V tem smislu torej ne smemo razumeti dobesedno teh lastnosti, kot strokovno pravimo, kvantnih števil, da so določeni kvarki res čarobni, imajo pa določeno lastnost, ki ji rečemo čarobnost.

Profesor Golob, vrsto let že sodelujete v eksperimentu KEK na Japonskem. Kako lahko te raziskave pripomorejo k izpopolnitvi naše slike o osnovnih delcih in interakcijah v naravi?

Konkretno z eksperimentom, pri katerem sodelujem na Japonskem, merimo posebno lastnost, eno izmed osnovnih sil – imenujemo jo šibka sila –, ki je nekoliko drugačna od drugih sil v smislu, da če vse delce zamenjamo z antidelci, potem se izkaže, da lastnosti te sile niso več povsem enake. Po drugi strani je močna sila, elektromagnetna sila, ki jo poznamo tudi iz vsakdanjega življenja, simetrična na tako zamenjavo. Ta drobna asimetrija, če tako rečem, pa ima pri šibki interakciji gromozanske posledice. Posledica tega je namreč, da je naše celotno vesolje sestavljeno iz snovi, ne iz antisnovi, se pravi iz delcev in ne iz antidelcev. Torej so v razvoju vesolja zaradi te lastnosti te sile tako rekoč vsa antisnov oziroma antidelci v razvoju vesolja izginili, se anihirali, kot temu rečemo, ostali pa so samo delci. Če se nekoliko pošalim, je ta drobna lastnost te interakcije odgovorna za to, da smo ljudje, ne pa antiljudje. Po drugi strani je pa res, da ko opravimo podrobnejše izračune, ugotovimo, da je ta asimetrija, opazna na ravni subatomskih delcev, še vedno premajhna, da bi razložila tako rekoč popolno prevlado snovi nad antisnovjo v vesolju. Iz tega sklepamo, da morajo obstajati doslej neznani delci in procesi, ki to asimetrijo ojačajo. Seveda je naša želja, da bi te nove procese, nove delce odkrili.


Zadnje čase se veliko govori o odkritju še neznanega delca, iz katerega naj bi bila temna snov, ki je v vesolju v večini. Kaj poleg odkritja tega delca še manjka naši trenutni standardni sliki subatomskega sveta?

 Da, približno pet odstotkov vesolja, kot danes vemo, sestavlja snov, taka, kot jo poznamo, približno 25 % vesolja sestavlja tako imenovana temna snov, 70 % vesolja pa tako imenovana temna energija. Kaj pomeni pridevnik temna v izrazu temna snov? To pomeni, da ne interagira oziroma ne sodeluje z drugo snovjo s pomočjo šibke, elektromagnetne močne interakcije na enak način kot snov, ki nam je znana. Občuti pa gravitacijsko interakcijo in zato pravzaprav vemo, da temna snov obstaja. Seveda je temna snov pojem, ki ga skušamo razumeti, se pravi, da skušamo ugotoviti, iz česa je sestavljena. Pred časom smo upali, verjeli, da bi lahko bila sestavljena iz nevtrinov, to so delci, ki jih dandanes dokaj dobro poznamo, poznamo njihove lastnosti. No, izkazalo se je, da je gostota nevtrinov v vesolju premajhna, da bi ti sestavljali to temno snov. Potem pa pridemo počasi v škripce. Trenutna teorija osnovnih sil med delci, ki je eksperimentalno zelo dobro preverjena  in jo imenujemo standardni model, namreč ne vsebuje drugih delcev, ki bi glede na svoje lastnosti lahko bili kandidati za to, da sestavljajo temno snov. Seveda obstajajo druge teorije, na primer supersimetrične teorije, ki pa predvidevajo obstoj drugih delcev, ki za zdaj niso še eksperimentalno potrjeni in med njimi je kar nekaj kandidatov, ki bi lahko sestavljali temno snov. Načinov možnega odkritja takih delcev je več: ena možnost je recimo v velikem hadronskem trkalniku v evropskem laboratoriju za fiziko delcev v Ženevi, kjer bi pri zelo visokih energijah trkov med protoni tvorili tudi take delce, za katere verjamemo, da so relativno težki. Druga možnost je, da opazimo njihov vpliv na procese pri nižjih energijah, za kar pa je treba te procese izmeriti z do zdaj nepredstavljivo natančnostjo, da opazimo ta majhen učinek teh do zdaj neopaženih delcev. Ta pristop uporabljamo oziroma ga nameravamo uporabiti v eksperimentu na Japonskem.

Če smo prav prešteli, trenutno poznamo 61 osnovnih delcev. Se ne zdi nenavadno, da bi bilo osnovno nadstropje narave tako zapleteno? Je upati, da je kje nižje še bolj osnovna raven, na kateri bi bilo le nekaj še osnovnejših gradnikov?

 Število delcev, ki jih danes štejemo za osnovne – pa dam osnovne v narekovaje, recimo nedeljive – je manjše, rekel bi sedemnajst, če sem pravilno preštel. Seveda ima vsak od teh delcev lahko le različne lastnosti, a to še ni razlog, da bi ga potem šteli za drugačen osnovni delec. Imate pa povsem prav, standardni model kot teorija, ki jo danes sprejemamo kot opis osnovnih sil med delci, ima veliko pomanjkljivosti. Ena izmed teh bi lahko bila, da je število osnovnih delcev preveliko. Pa to ni tista največja pomanjkljivost, zaradi katere nas večina znanstvenikov meni, da standardni model ni končna teorija vsega, če tako rečem. Stari Grki so verjeli, da je svet sestavljen iz ognja, vode, zemlje in zraka. Več stoletij pozneje je Mendelejev postavil periodni sistem elementov in izkazalo se je, da tudi atomi v tem periodnem sistemu niso nedeljivi, niso osnovni delci. Danes vemo, da so atomska jedra sestavljena iz protonov in nevtronov, pa tudi protoni in nevtroni se naprej delijo oziroma so sestavljeni iz kvarkov. Z drugimi besedami, zavedati se moramo, da je naše razumevanje, kaj je osnovna sestava snovi, pogojeno z eksperimentalnimi možnostmi, ki so nam na voljo. Trenutno uporabljamo najmočnejše mikroskope, mikroskope v narekovajih, to so pospeševalniki delcev in pri do zdaj dosegljivih energijah nam omogočajo vpogled v sestavne dele snovi, ki so veliki recimo deset na minus petnajsto metra. Seveda ni nikjer zagotovila, da pri še bolj zmogljivih eksperimentalnih napravah ne bi nekoč ugotovili, da so tudi tisti delci, ki jih danes štejemo za nesestavljene,  v resnici strukturirani, da imajo sestavo. Dejstvo pa je, da dandanes vsi eksperimentalni dokazi, ki so na voljo, kažejo na to, da so ti delci, ki jih danes imenujemo osnovni delci, nesestavljeni. Sklepati o čemer koli drugem brez podlage eksperimentalnih dejstev je pa seveda stvar filozofije  oziroma subjektivnega pristopa k naravi.

Z novim detektorjem, ki bo začel zajemati podatke v prihodnjih letih, bo mogoče odkrivati stvari z desetkrat večjo natančnostjo, kot je bilo mogoče do zdaj. Bi lahko te raziskave spremenile naš pogled na svet?

Raziskave, ki jih opravljamo ne samo na ravni recimo eksperimentalne fizike osnovnih delcev ali katere druge fizike, lahko do neke mere močno spremenijo naš pogled na svet. Poglejmo  v zgodovino: razvoj kvantne mehanike je, najsi se tega zavedamo ali ne, močno spremenil človeški pogled na življenje in na svet okoli nas. Če nekoliko karikiram, možnosti obstajajo  oziroma obstajajo teorije, ki pravijo, da ne živimo v prostoru, ki je sestavljen iz treh prostorskih dimenzij in ene časovne, ampak da živimo v prostoru, ki ima veliko več dimenzij, pa jih ne opazimo. To si lahko predstavljamo tako, kot da bi bili mravlje na listu papirja. Mravlja se pomika gor in dol v dveh dimenzijah, pa se pravzaprav ne zaveda, da živi v prostoru, ki je sestavljen iz treh dimenzij. To bi bilo verjetno precej spremenjeno gledanje na svet, v katerem živimo, in drugačno razumevanje tega sveta.

 


30.11.2023

Znanost v novembru: od občanske znanosti do projekta ERC

Mesec je naokoli in znova v zadnji novembrski epizodi Frekvence X zbiramo in izberemo nekaj najodmevnejših znanstvenih raziskav preteklega meseca. Tokrat se še posebej posvečamo prvemu nacionalnemu dnevu občanske znanosti, katere ambasadorka je dr. Zarja Muršič, povzamemo pa tudi nov pridobljeni projekt ERC, ki ga je tokrat dobil dr. Lev Vidmar z ljubljanske fakultete za matematiko in fiziko in Inštituta Jožef Stefan.


23.11.2023

Čemu tak pomp zaradi vodika?

Vodik je najmanjša, najlažja in najbolj razširjena molekula v vesolju. A v naravi ga samega po sebi skoraj ne najdemo, pridobiti ga je treba iz vode ali fosilnih goriv, kot so plin, premog in nafta. Potem ko se že lep čas uporablja za raketno gorivo, ga zdaj spodbujajo tudi kot čisto in varno alternativo nafti in plinu za ogrevanje in prevoz. Vodik je zadnja leta postal vroča politična tema, vlade po svetu, pa tudi Evropska unija, zanj namenjajo milijarde, toda ali je ves ta hrup res upravičen? Je res najboljša podnebna rešitev?


16.11.2023

Posnetek celotne okrogle mize Frekvence X: Kaj pa če se zmotijo znanstveniki?

Zgodovina znanosti je polna takšnih in drugačnih zmot, ki pa niso nujno slabe, temveč predstavljajo osnovo znanstvene metode in evolucijo znanosti. Tako so med okroglo mizo o zmotah v znanosti, ki je potekala na Inštitutu Jožef Stefan, izpostavili sodelujoči znanstveniki. Ob tem so poudarili, da je znanost še vedno nekaj najboljšega, kar imamo in k čemur se zatečemo, ko je kriza.


16.11.2023

Kaj pa če se zmotijo znanstveniki?

Zgodovina znanosti je polna takšnih in drugačnih zmot, ki pa niso nujno slabe, temveč predstavljajo osnovo znanstvene metode in evolucijo znanosti. Tako so med okroglo mizo o zmotah v znanosti, ki je potekala na Inštitutu Jožef Stefan, izpostavili sodelujoči znanstveniki. Ob tem so poudarili, da je znanost še vedno nekaj najboljšega, kar imamo in k čemur se zatečemo, ko je kriza.


09.11.2023

"Vse snovi so strupi; nobene ni, ki ne bi bila strup. Le odmerek loči strup od zdravila."

Tako je že v 16. stoletju dejal švicarski alkimist in zdravnik Paracelsus in z njegovo mislijo se v tokratni Frekvenci podajamo po poti strupov.


30.10.2023

Prah - od zlata v hišnem prahu do iskalcev kozmičnega prahu na strehah

Dvignimo malo prahu ... okoli prahu! Ste ta teden že obrisali prah in posesali? Morda bi morali … Zagotovo pa boste, ko vam na uho zaide najnovejša Frekvenca X, ki skupaj z geologom Klemnom Teranom spoznava hišni in cestni prah ter njune skrb vzbujajoče plati. V dneh, ko se sliši svetopisemski stavek 'Prah si in v prah se povrneš', pa bomo tudi na lovu za kozmičnim prahom.


26.10.2023

Znanost v oktobru: Od bisfenola A do misije na asteroid

Pregledi meseca so nazaj. Tokrat pregledujemo najopaznejša znanstvena odkritja oktobra. Nobelove nagrade smo že obdelali, v današnji oddaji se bomo posvetili Zoisovim nagradam, ki so nekakšne slovenske Nobelove nagrade. Gostimo Zoisovo nagrajenko za posebne dosežke na področju farmacevtske kemije in toksikologije dr. Lucijo Peterlin Mašič. S kolegi raziskuje nadomestke bisfenola A, spojine, ki jo uporabljajo za pridobitev plastike, BPA pa je problematičen, ker je motilec endokrinega sistema. Slišite lahko tudi nekaj drugih novic iz sveta znanosti.


19.10.2023

Vinska mušica - drobna junakinja, ki tlakuje pot genetiki

Postavite na mizo skledo sadja in v hipu bodo tam. Vzamejo se tako rekoč iz nič – majhne, rjave, z velikanskimi očmi. Te drobne in za mnoge tako moteče vinske mušice, ki jih je največ prav jeseni, imajo neverjetno znanstveno pot, podpisujejo se pod kar šest Nobelovih nagrad.


12.10.2023

Na misiji k Jupitrovim štirim karizmatičnim družicam

Jupiter je daleč največji planet v sončnem sistemu – več kot dvakrat večji od vseh drugih planetov skupaj! Kljub neznansko lepim umetelnim progam in lisam vladajo tam sila neprijazno okolje, ledeno mrzle temperature in pošastno sevanje. In zakaj nas ta tako neprijazen svet potem tako zanima? Zakaj k njegovim štirim družicam, Galilejevim lunam, pošiljamo novo evropsko sondo? Odgovor je preprost – voda in skrito življenje. Če bi bila naša Zemlja frnikola, bi bil Jupiter velik kot košarkarska žoga. K njemu se je aprila podala tudi evropska sonda Juice.


05.10.2023

Nobelove nagrade 2023: o mRNK cepivih, atosekundah in kvantnih pikah

Raziskave elektronov v atomih in molekulah, ki se odvijajo na nepredstavljivo kratkih časovnih skalah, znanstvena dognanja v ozadju mRNK cepiv, ki so pomembno zaznamovala pandemijo koronavirusa, in pa kvantne pike, polprevodniške nanostrukture, ki se jih uporablja na več različnih tehnoloških področjih. To so presežki, za katere bodo letos v Stockholmu med drugim podelili Nobelove nagrade. Kaj natanko so odkrili izpostavljeni znanstveniki, kako se te raziskave kažejo v praksi in kakšne so njihove življenjske zgodbe, analiziramo v Frekvenci X, ki si tokrat podaja roke z znanstveno redakcijo Prvega programa Radia Slovenija.


28.09.2023

Josef Ressel: Od vijaka do junaka

Josef Ressel je bil morda eden zadnjih res širokih mislecev. Po osnovni izobrazbi gozdar, je pomemben pečat pustil na zelo različnih področjih. Tehnike in inovacij se je loteval na način Leonarda Da Vincija. Najbolj je znan po izumu ladijskega vijaka, pomembna je njegova vloga pri pogozdovanju Krasa, bil je hidrotehnični strokovnjak. V prvem obdobju industrijske revolucije se je ukvarjal z novimi materiali in tehnologijami, zlasti pa ga je pritegnilo raziskovanje možnosti tehnoloških izboljšav v prometu in energetiki. Med zanimivejše ideje lahko štejemo tudi brezsmradno stranišče in lokomobil. Deloval je na Dolenjskem, na Krasu, v Trstu in Ljubljani, kjer je umrl leta 1857. Josef Ressel je bil češko-nemških korenin, v Ljubljani ima svojo cesto in spomenik, v Šentjerneju so mu posvetili metuljček in penino, načrtujejo tudi Resslov most. Kakšna je njegova zapuščina?


21.09.2023

Jožef Stefan: Eden največjih fizikov svojega časa

Kdo je bil Jožef Stefan? Čeprav se nam zdi, da ga vsi po malem poznamo, saj je po njem poimenovan največji znanstveni inštitut v Sloveniji, pa o njem v resnici vemo zelo malo. Znano je, da je bil otrok revnih in nepismenih staršev, s svojo nadarjenostjo in osredotočenostjo pa je kmalu dokazal, da je velik učenjak, postal je tudi eden vodilnih znanstvenikov v avstrijskem cesarstvu. Fizika je bila njegovo življenje - dobesedno, veliko dni je prespal kar na inštitutu, ki ga je vodil, ker je bil tako zelo predan delu. Poročil se je šele pri 56 letih in v sreči v dvoje je užival le kakšno leto, saj je kmalu po poroki umrl zaradi možganske kapi. Kdo je bil torej ta veliki fizik, edini znanstvenik slovenskega rodu, po katerem je poimenovan tudi fizikalni Stefan-Boltzmannov zakon?


14.09.2023

Alma Sodnik: Ženska, ki je stremela k iskanju čiste resnice

Njeno življenje ni bilo lahko. Izgubila je edinega otroka, podpirala v vojni poškodovanega moža in kariero gradila v moškem akademskem svetu ter v času najostrejše stalinizacije.


07.09.2023

Milan Vidmar: pionirski elektrotehnik, šahovski velemojster in legendarni profesor

Ogrevanje pred novo sezono Frekvence X začenjamo z zavojem v preteklost, k znanstvenikom, ki so se rodili ali delovali na slovenskih tleh in so splošni javnosti manj znani. Kot prvemu se bomo posvetili profesorju Milanu Vidmarju, ki je zaznamoval razvoj slovenske elektrotehnike in prva leta ljubljanske Univerze. O profesorju Vidmarju kot pionirskem elektrotehniku, vrhunskemu šahovskemu velemojstru in velikem borcu, ki je vplival na družbeni in gospodarski razvoj slovenskega ozemlja v svojem času, se je Jan Grilc pogovarjali s tremi gosti, ki jim je profesor Vidmar vsakemu po svoje zaznamoval življenjsko pot. Kdo je bil torej človek, ki je odločilno vplival na razvoj Univerze v zgodnjih letih, spoznal Nikolo Teslo in odigral legendarne partije z največjimi velemojstri šaha v svojem času? Gosti: - prof. dr. Rafael Cajhen, predavatelj, mentor in raziskovalec na Fakulteti za elektrotehniko - prof. dr. Maks Babuder, dolgoletni direktor Elektrotehniškega inštituta Milan Vidmar - prof. dr. Ivan Bratko, Fakulteta za računalništvo in informatiko, šahovski mojstrski kandidat


29.06.2023

Bolni - a le na dopustu?

Delaš, se trudiš, da boš pred dopustom storil vse, kar moraš, končno odideš iz pisarne, ugasneš luč, odzdraviš kolegom in v glavi snuješ načrte za dopust. Pakiraš, se voziš na morje, potem pa kar naenkrat bolečine v mišicah, smrkanje, morda celo vročina. Znano? Marsikomu verjetno res. Preddopustniška Frekvenca X se torej odpravlja na teren tako imenovane bolezni prostočasja. Zakaj se zgodi, da pogosto zbolimo ravno takrat, ko naj bi se imeli fino. Torej - na dopustu.


22.06.2023

Namakanje

Predzadnja Frekvenca X v letošnji sezoni se tik pred poletno vročino poglablja v namakalne sisteme. Prav ti so bili osnova, na kateri so med drugim zrasle antične civilizacije, od Kitajske do Egipta, hkrati pa so tudi danes marsikje osnova kmetijstva. V Grčiji, Italiji in Španiji na primer namakajo skoraj polovico kmetijskih površin, Slovenija pa le en odstotek. Kakšen je razlog, kako je z vodo in še marsikaj zanimivega, je o namakalnih sistemih izvedela Maja Ratej.


15.06.2023

Ko popusti jez

Po siloviti eksploziji in porušitvi jezu Nova Kahovka, ki je v južni Ukrajini na reki Dneper zadrževal 19 kubičnih kilometrov ali za skoraj pet Tržaških zalivov vode, so obsežni deli pokrajine še vedno poplavljeni, več deset tisoč ljudi pa razseljenih. V tokratni Frekvenci X pri strokovnjakih za visoke vodne pregrade preverjamo, kako zahteven gradbeni podvig so jezovi in katere porušitve jezov so odmevale v zgodovini. Posvetimo pa se tudi nekaterim največjim orjakom med jezovi na svetu.


08.06.2023

Ko se izštekamo ...

Uživanje na glasbenih koncertih ima svoje čare, občutka avtentične interakcije ne more nadomestiti nobena tehnologija. Živi glasbeni performansi nas močno pritegnejo, tako pri nastopajočih kot pri publiki sprožijo posebne občutke. Kaj se takrat dogaja v naših možganih, kako na nas vpliva učinek množice, kakšni muzikološki momenti nas prepričajo in zakaj je ubiranje “izštekanih” poti tako privlačno.


01.06.2023

Znanost v maju: O otroku treh staršev, frontotemporalni demenci in Znanosti na cesti

V prvi junijski Frekvenci X se oziramo v maj, ko je odmevalo rojstvo otroka, ki nosi DNK treh oseb. Pri dveh pomembnih svetovnih študijah so sodelovali tudi slovenski znanstveniki – v prvi o proteinu FUS, ki je eden od ključnih dejavnikov za nastanek frontotemporalne demence, v drugi pa o tem, da lahko ženske prekinejo hormonsko terapijo pri zdravljenju raka dojk z namenom zanositve in po porodu spet nadaljujejo z njo. Spoznamo tudi aktualnega mentorja leta, gostujoča urednica in gostja pa je tokrat dr. Saša Novak, komunikatorica znanosti 2022 in gonilno srce projekta Znanost na cesti, ki že deset let povezuje javnost z znanostjo.


25.05.2023

Pogovoriti se moramo o ChatGPT-ju

Povzetek okrogle mize na Filozofski fakulteti v Ljubljani v organizaciji Znanosti na cesti in Frekvence X. ChatGPT je kot jezikovni model že osvojil jezikovne bravure človeškega sporazumevanja in prebral nesluteno količino vsega, kar se skriva na svetovnem spletu, a strokovnjake vse bolj bega, simptom česa je brbotanje umetne inteligence v globinah. Ne gre le za vprašanja, katere poklice in dejavnosti vse bo umetna inteligenca v prihodnosti nadomestila, nadgradila, olajšala ali izpodrinila ter kako nam bo v pomoč na skoraj vseh področjih, pač pa za negotovost, česa vsega bo še sposobna, a se nam o tem danes še sanja ne. Kako bo zakoličila prihodnost in kako se bomo v novih okoliščinah znašli mi, ljudje? Kaj bo z vrednotami modrosti, učenja in intelektualnega napredka, v kakšno valuto se bo prelevilo znanje in kako se bo na to pripravil izobraževalni sistem?


Stran 3 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov