Predlogi
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Tokrat smo se spustili v najnižje nadstropje narave, med njene osnovne gradnike. Gostili smo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožef Štefan v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Tsukubi raziskuje doslej neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki. Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je bil gost v Frekvenci X na Valu 202.
Spustili smo se v najnižje nadstropje narave, med njene osnovne gradnike. Gostimo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožefa Stefana v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Cukubi raziskuje do zdaj neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki.
Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev, iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je gost Frekvence X.
Poganjanje tako zapletenih poskusov premika meje v fiziki, inženirstvu, računalništvu in celo menedžmentu. Gotovo to lahko ilustrirate s kakšnim zanimivim primerom?
Res je. V pospeševalnikih in detektorjih delcev se dandanes uporabljajo nove tehnologije, pogosto še nepreverjene, ki pa čez čas precej pogosto najdejo aplikativno vrednost na drugih področjih, denimo v medicini in drugje. Recimo za veliki hadronski trkalnik, ki deluje v Ženevi, so za superprevodne magnete uporabili zelo tanke žičke iz niobija in titana, vsaka od njih je tanjša od človeškega lasu. Če bi vse te žičke postavili drugo za drugo, bi jih bilo za šest razdalj do Sonca in nazaj. Enake oziroma podobne superprevodne magnete bodo uporabljali tudi v fuzijskem reaktorju ITER, za katerega človeštvo upa, da bo odgovoril na vprašanje preskrbe z energijo za naslednje stoletje in še dlje.
Mogoče nekoliko bolj zabavna zgodba: pred časom, no, že kar pred nekaj leti, ko smo po poletnem remontu skušali zagnati trkalnik LEP – to je bil trkalnik, ki je deloval v istem podzemnem predoru, kot dandanes deluje veliki hadronski trkalnik – nam nikakor ni uspelo pospešiti žarkov do želenih energij. V trenutku, ko so se delci znašli v tem pospeševalniku, so na določenem delu izginili. Po nekaj dneh ugotavljanja, kaj bi lahko bilo narobe, ni bilo druge rešitve, kot da spet ustavimo pospeševalnik in pošljemo tehnike pogledat, kaj se dogaja. Ko so pospeševalnik odprli na mestu, kjer so se delci izgubljali, so našli prazno steklenico pijače, ki jo je eden od prejšnjih tehnikov pustil tam. To nam seveda potrjuje, da je vsa tehnologija še vedno odvisna od človeškega dela.
Naj dam kot primer: skupina znanstvenikov, ki je zbrana okoli detektorja Atlas na velikem hadronskem trkalniku, je sestavljena iz ljudi s prav vseh celin, razen z Antarktike, kar dobesedno pomeni, da ta eksperiment nikoli ne spi, saj je v vsakem trenutku na Zemlji nekaj članov te skupine, torej imajo dan, da lahko pomagajo pri obratovanju tega pospeševalnika. Tehnologija oziroma načini za zagotavljanje delovanja teh zapletenih naprav so tako dejansko odvisni od zelo usklajenega dela tisočerih znanstvenikov v taki skupini.
V minulega pol stoletja ste fiziki odkrili vrsto osnovnih delcev, ki razložijo naravo treh osnovnih sil v naravi. Tem delcem pripisujete zanimive lastnosti, kot so barva, čudnost, celo lepota, čar in okus. Se ti pojmi povezujejo s kakšnimi preprostimi pravili, ki nam povedo, kaj je v naravi dovoljeno in kaj ne?
Vsi ti pojmi, ki jih omenjate, označujejo različne lastnosti teh osnovnih delcev, za katere smo si izmislili res nekoliko čudna poimenovanja. Te lastnosti osnovnih delcev pa so povezane z načinom, kako med seboj interagirajo ali po domače povedano, kakšne sile med seboj občutijo. Te sile seveda vodijo v nekatere dovoljene ali nedovoljene primere v naravi, ki pa niso povsem preprosti. Naj dam primer: omenili ste barvo. Kvarki, ki sestavljajo recimo protone, ti so gradniki atomskih jeder, nosijo različne barve. Vendar kvarki, ki sestavljajo protone, morajo imeti vedno tako barvo, da če bi zmešali te barve, bi dobili belo barvo. Drugačni kvarki ne morejo sestavljati protona in drugih težjih delcev. Pri tem se je treba seveda zavedati, da je barva v tem primeru samo poimenovanje oziroma celo metafora za neko lastnost teh osnovnih delcev. V resnici seveda ti kvarki niso pobarvani z različnimi barvami. Čarobnost je tudi lastnost ene od vrst izmed šestih kvarkov, ki jih poznamo. Drugi imajo še druge čudne lastnosti, ki jih poimenujemo lepota in tako naprej.
Je torej poimenovanje le posledica trenutnega navdiha ljudi, ki so odkrili določene lastnosti?
Že sama beseda kvarki izhaja iz knjige Jamesa Joyca in sama po sebi, kot je že Joyce nekoč rekel, ne pomeni nič. V tem smislu torej ne smemo razumeti dobesedno teh lastnosti, kot strokovno pravimo, kvantnih števil, da so določeni kvarki res čarobni, imajo pa določeno lastnost, ki ji rečemo čarobnost.
Profesor Golob, vrsto let že sodelujete v eksperimentu KEK na Japonskem. Kako lahko te raziskave pripomorejo k izpopolnitvi naše slike o osnovnih delcih in interakcijah v naravi?
Konkretno z eksperimentom, pri katerem sodelujem na Japonskem, merimo posebno lastnost, eno izmed osnovnih sil – imenujemo jo šibka sila –, ki je nekoliko drugačna od drugih sil v smislu, da če vse delce zamenjamo z antidelci, potem se izkaže, da lastnosti te sile niso več povsem enake. Po drugi strani je močna sila, elektromagnetna sila, ki jo poznamo tudi iz vsakdanjega življenja, simetrična na tako zamenjavo. Ta drobna asimetrija, če tako rečem, pa ima pri šibki interakciji gromozanske posledice. Posledica tega je namreč, da je naše celotno vesolje sestavljeno iz snovi, ne iz antisnovi, se pravi iz delcev in ne iz antidelcev. Torej so v razvoju vesolja zaradi te lastnosti te sile tako rekoč vsa antisnov oziroma antidelci v razvoju vesolja izginili, se anihirali, kot temu rečemo, ostali pa so samo delci. Če se nekoliko pošalim, je ta drobna lastnost te interakcije odgovorna za to, da smo ljudje, ne pa antiljudje. Po drugi strani je pa res, da ko opravimo podrobnejše izračune, ugotovimo, da je ta asimetrija, opazna na ravni subatomskih delcev, še vedno premajhna, da bi razložila tako rekoč popolno prevlado snovi nad antisnovjo v vesolju. Iz tega sklepamo, da morajo obstajati doslej neznani delci in procesi, ki to asimetrijo ojačajo. Seveda je naša želja, da bi te nove procese, nove delce odkrili.
Zadnje čase se veliko govori o odkritju še neznanega delca, iz katerega naj bi bila temna snov, ki je v vesolju v večini. Kaj poleg odkritja tega delca še manjka naši trenutni standardni sliki subatomskega sveta?
Da, približno pet odstotkov vesolja, kot danes vemo, sestavlja snov, taka, kot jo poznamo, približno 25 % vesolja sestavlja tako imenovana temna snov, 70 % vesolja pa tako imenovana temna energija. Kaj pomeni pridevnik temna v izrazu temna snov? To pomeni, da ne interagira oziroma ne sodeluje z drugo snovjo s pomočjo šibke, elektromagnetne močne interakcije na enak način kot snov, ki nam je znana. Občuti pa gravitacijsko interakcijo in zato pravzaprav vemo, da temna snov obstaja. Seveda je temna snov pojem, ki ga skušamo razumeti, se pravi, da skušamo ugotoviti, iz česa je sestavljena. Pred časom smo upali, verjeli, da bi lahko bila sestavljena iz nevtrinov, to so delci, ki jih dandanes dokaj dobro poznamo, poznamo njihove lastnosti. No, izkazalo se je, da je gostota nevtrinov v vesolju premajhna, da bi ti sestavljali to temno snov. Potem pa pridemo počasi v škripce. Trenutna teorija osnovnih sil med delci, ki je eksperimentalno zelo dobro preverjena in jo imenujemo standardni model, namreč ne vsebuje drugih delcev, ki bi glede na svoje lastnosti lahko bili kandidati za to, da sestavljajo temno snov. Seveda obstajajo druge teorije, na primer supersimetrične teorije, ki pa predvidevajo obstoj drugih delcev, ki za zdaj niso še eksperimentalno potrjeni in med njimi je kar nekaj kandidatov, ki bi lahko sestavljali temno snov. Načinov možnega odkritja takih delcev je več: ena možnost je recimo v velikem hadronskem trkalniku v evropskem laboratoriju za fiziko delcev v Ženevi, kjer bi pri zelo visokih energijah trkov med protoni tvorili tudi take delce, za katere verjamemo, da so relativno težki. Druga možnost je, da opazimo njihov vpliv na procese pri nižjih energijah, za kar pa je treba te procese izmeriti z do zdaj nepredstavljivo natančnostjo, da opazimo ta majhen učinek teh do zdaj neopaženih delcev. Ta pristop uporabljamo oziroma ga nameravamo uporabiti v eksperimentu na Japonskem.
Če smo prav prešteli, trenutno poznamo 61 osnovnih delcev. Se ne zdi nenavadno, da bi bilo osnovno nadstropje narave tako zapleteno? Je upati, da je kje nižje še bolj osnovna raven, na kateri bi bilo le nekaj še osnovnejših gradnikov?
Število delcev, ki jih danes štejemo za osnovne – pa dam osnovne v narekovaje, recimo nedeljive – je manjše, rekel bi sedemnajst, če sem pravilno preštel. Seveda ima vsak od teh delcev lahko le različne lastnosti, a to še ni razlog, da bi ga potem šteli za drugačen osnovni delec. Imate pa povsem prav, standardni model kot teorija, ki jo danes sprejemamo kot opis osnovnih sil med delci, ima veliko pomanjkljivosti. Ena izmed teh bi lahko bila, da je število osnovnih delcev preveliko. Pa to ni tista največja pomanjkljivost, zaradi katere nas večina znanstvenikov meni, da standardni model ni končna teorija vsega, če tako rečem. Stari Grki so verjeli, da je svet sestavljen iz ognja, vode, zemlje in zraka. Več stoletij pozneje je Mendelejev postavil periodni sistem elementov in izkazalo se je, da tudi atomi v tem periodnem sistemu niso nedeljivi, niso osnovni delci. Danes vemo, da so atomska jedra sestavljena iz protonov in nevtronov, pa tudi protoni in nevtroni se naprej delijo oziroma so sestavljeni iz kvarkov. Z drugimi besedami, zavedati se moramo, da je naše razumevanje, kaj je osnovna sestava snovi, pogojeno z eksperimentalnimi možnostmi, ki so nam na voljo. Trenutno uporabljamo najmočnejše mikroskope, mikroskope v narekovajih, to so pospeševalniki delcev in pri do zdaj dosegljivih energijah nam omogočajo vpogled v sestavne dele snovi, ki so veliki recimo deset na minus petnajsto metra. Seveda ni nikjer zagotovila, da pri še bolj zmogljivih eksperimentalnih napravah ne bi nekoč ugotovili, da so tudi tisti delci, ki jih danes štejemo za nesestavljene, v resnici strukturirani, da imajo sestavo. Dejstvo pa je, da dandanes vsi eksperimentalni dokazi, ki so na voljo, kažejo na to, da so ti delci, ki jih danes imenujemo osnovni delci, nesestavljeni. Sklepati o čemer koli drugem brez podlage eksperimentalnih dejstev je pa seveda stvar filozofije oziroma subjektivnega pristopa k naravi.
Z novim detektorjem, ki bo začel zajemati podatke v prihodnjih letih, bo mogoče odkrivati stvari z desetkrat večjo natančnostjo, kot je bilo mogoče do zdaj. Bi lahko te raziskave spremenile naš pogled na svet?
Raziskave, ki jih opravljamo ne samo na ravni recimo eksperimentalne fizike osnovnih delcev ali katere druge fizike, lahko do neke mere močno spremenijo naš pogled na svet. Poglejmo v zgodovino: razvoj kvantne mehanike je, najsi se tega zavedamo ali ne, močno spremenil človeški pogled na življenje in na svet okoli nas. Če nekoliko karikiram, možnosti obstajajo oziroma obstajajo teorije, ki pravijo, da ne živimo v prostoru, ki je sestavljen iz treh prostorskih dimenzij in ene časovne, ampak da živimo v prostoru, ki ima veliko več dimenzij, pa jih ne opazimo. To si lahko predstavljamo tako, kot da bi bili mravlje na listu papirja. Mravlja se pomika gor in dol v dveh dimenzijah, pa se pravzaprav ne zaveda, da živi v prostoru, ki je sestavljen iz treh dimenzij. To bi bilo verjetno precej spremenjeno gledanje na svet, v katerem živimo, in drugačno razumevanje tega sveta.
694 epizod
Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.
Tokrat smo se spustili v najnižje nadstropje narave, med njene osnovne gradnike. Gostili smo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožef Štefan v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Tsukubi raziskuje doslej neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki. Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je bil gost v Frekvenci X na Valu 202.
Spustili smo se v najnižje nadstropje narave, med njene osnovne gradnike. Gostimo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožefa Stefana v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Cukubi raziskuje do zdaj neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki.
Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev, iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je gost Frekvence X.
Poganjanje tako zapletenih poskusov premika meje v fiziki, inženirstvu, računalništvu in celo menedžmentu. Gotovo to lahko ilustrirate s kakšnim zanimivim primerom?
Res je. V pospeševalnikih in detektorjih delcev se dandanes uporabljajo nove tehnologije, pogosto še nepreverjene, ki pa čez čas precej pogosto najdejo aplikativno vrednost na drugih področjih, denimo v medicini in drugje. Recimo za veliki hadronski trkalnik, ki deluje v Ženevi, so za superprevodne magnete uporabili zelo tanke žičke iz niobija in titana, vsaka od njih je tanjša od človeškega lasu. Če bi vse te žičke postavili drugo za drugo, bi jih bilo za šest razdalj do Sonca in nazaj. Enake oziroma podobne superprevodne magnete bodo uporabljali tudi v fuzijskem reaktorju ITER, za katerega človeštvo upa, da bo odgovoril na vprašanje preskrbe z energijo za naslednje stoletje in še dlje.
Mogoče nekoliko bolj zabavna zgodba: pred časom, no, že kar pred nekaj leti, ko smo po poletnem remontu skušali zagnati trkalnik LEP – to je bil trkalnik, ki je deloval v istem podzemnem predoru, kot dandanes deluje veliki hadronski trkalnik – nam nikakor ni uspelo pospešiti žarkov do želenih energij. V trenutku, ko so se delci znašli v tem pospeševalniku, so na določenem delu izginili. Po nekaj dneh ugotavljanja, kaj bi lahko bilo narobe, ni bilo druge rešitve, kot da spet ustavimo pospeševalnik in pošljemo tehnike pogledat, kaj se dogaja. Ko so pospeševalnik odprli na mestu, kjer so se delci izgubljali, so našli prazno steklenico pijače, ki jo je eden od prejšnjih tehnikov pustil tam. To nam seveda potrjuje, da je vsa tehnologija še vedno odvisna od človeškega dela.
Naj dam kot primer: skupina znanstvenikov, ki je zbrana okoli detektorja Atlas na velikem hadronskem trkalniku, je sestavljena iz ljudi s prav vseh celin, razen z Antarktike, kar dobesedno pomeni, da ta eksperiment nikoli ne spi, saj je v vsakem trenutku na Zemlji nekaj članov te skupine, torej imajo dan, da lahko pomagajo pri obratovanju tega pospeševalnika. Tehnologija oziroma načini za zagotavljanje delovanja teh zapletenih naprav so tako dejansko odvisni od zelo usklajenega dela tisočerih znanstvenikov v taki skupini.
V minulega pol stoletja ste fiziki odkrili vrsto osnovnih delcev, ki razložijo naravo treh osnovnih sil v naravi. Tem delcem pripisujete zanimive lastnosti, kot so barva, čudnost, celo lepota, čar in okus. Se ti pojmi povezujejo s kakšnimi preprostimi pravili, ki nam povedo, kaj je v naravi dovoljeno in kaj ne?
Vsi ti pojmi, ki jih omenjate, označujejo različne lastnosti teh osnovnih delcev, za katere smo si izmislili res nekoliko čudna poimenovanja. Te lastnosti osnovnih delcev pa so povezane z načinom, kako med seboj interagirajo ali po domače povedano, kakšne sile med seboj občutijo. Te sile seveda vodijo v nekatere dovoljene ali nedovoljene primere v naravi, ki pa niso povsem preprosti. Naj dam primer: omenili ste barvo. Kvarki, ki sestavljajo recimo protone, ti so gradniki atomskih jeder, nosijo različne barve. Vendar kvarki, ki sestavljajo protone, morajo imeti vedno tako barvo, da če bi zmešali te barve, bi dobili belo barvo. Drugačni kvarki ne morejo sestavljati protona in drugih težjih delcev. Pri tem se je treba seveda zavedati, da je barva v tem primeru samo poimenovanje oziroma celo metafora za neko lastnost teh osnovnih delcev. V resnici seveda ti kvarki niso pobarvani z različnimi barvami. Čarobnost je tudi lastnost ene od vrst izmed šestih kvarkov, ki jih poznamo. Drugi imajo še druge čudne lastnosti, ki jih poimenujemo lepota in tako naprej.
Je torej poimenovanje le posledica trenutnega navdiha ljudi, ki so odkrili določene lastnosti?
Že sama beseda kvarki izhaja iz knjige Jamesa Joyca in sama po sebi, kot je že Joyce nekoč rekel, ne pomeni nič. V tem smislu torej ne smemo razumeti dobesedno teh lastnosti, kot strokovno pravimo, kvantnih števil, da so določeni kvarki res čarobni, imajo pa določeno lastnost, ki ji rečemo čarobnost.
Profesor Golob, vrsto let že sodelujete v eksperimentu KEK na Japonskem. Kako lahko te raziskave pripomorejo k izpopolnitvi naše slike o osnovnih delcih in interakcijah v naravi?
Konkretno z eksperimentom, pri katerem sodelujem na Japonskem, merimo posebno lastnost, eno izmed osnovnih sil – imenujemo jo šibka sila –, ki je nekoliko drugačna od drugih sil v smislu, da če vse delce zamenjamo z antidelci, potem se izkaže, da lastnosti te sile niso več povsem enake. Po drugi strani je močna sila, elektromagnetna sila, ki jo poznamo tudi iz vsakdanjega življenja, simetrična na tako zamenjavo. Ta drobna asimetrija, če tako rečem, pa ima pri šibki interakciji gromozanske posledice. Posledica tega je namreč, da je naše celotno vesolje sestavljeno iz snovi, ne iz antisnovi, se pravi iz delcev in ne iz antidelcev. Torej so v razvoju vesolja zaradi te lastnosti te sile tako rekoč vsa antisnov oziroma antidelci v razvoju vesolja izginili, se anihirali, kot temu rečemo, ostali pa so samo delci. Če se nekoliko pošalim, je ta drobna lastnost te interakcije odgovorna za to, da smo ljudje, ne pa antiljudje. Po drugi strani je pa res, da ko opravimo podrobnejše izračune, ugotovimo, da je ta asimetrija, opazna na ravni subatomskih delcev, še vedno premajhna, da bi razložila tako rekoč popolno prevlado snovi nad antisnovjo v vesolju. Iz tega sklepamo, da morajo obstajati doslej neznani delci in procesi, ki to asimetrijo ojačajo. Seveda je naša želja, da bi te nove procese, nove delce odkrili.
Zadnje čase se veliko govori o odkritju še neznanega delca, iz katerega naj bi bila temna snov, ki je v vesolju v večini. Kaj poleg odkritja tega delca še manjka naši trenutni standardni sliki subatomskega sveta?
Da, približno pet odstotkov vesolja, kot danes vemo, sestavlja snov, taka, kot jo poznamo, približno 25 % vesolja sestavlja tako imenovana temna snov, 70 % vesolja pa tako imenovana temna energija. Kaj pomeni pridevnik temna v izrazu temna snov? To pomeni, da ne interagira oziroma ne sodeluje z drugo snovjo s pomočjo šibke, elektromagnetne močne interakcije na enak način kot snov, ki nam je znana. Občuti pa gravitacijsko interakcijo in zato pravzaprav vemo, da temna snov obstaja. Seveda je temna snov pojem, ki ga skušamo razumeti, se pravi, da skušamo ugotoviti, iz česa je sestavljena. Pred časom smo upali, verjeli, da bi lahko bila sestavljena iz nevtrinov, to so delci, ki jih dandanes dokaj dobro poznamo, poznamo njihove lastnosti. No, izkazalo se je, da je gostota nevtrinov v vesolju premajhna, da bi ti sestavljali to temno snov. Potem pa pridemo počasi v škripce. Trenutna teorija osnovnih sil med delci, ki je eksperimentalno zelo dobro preverjena in jo imenujemo standardni model, namreč ne vsebuje drugih delcev, ki bi glede na svoje lastnosti lahko bili kandidati za to, da sestavljajo temno snov. Seveda obstajajo druge teorije, na primer supersimetrične teorije, ki pa predvidevajo obstoj drugih delcev, ki za zdaj niso še eksperimentalno potrjeni in med njimi je kar nekaj kandidatov, ki bi lahko sestavljali temno snov. Načinov možnega odkritja takih delcev je več: ena možnost je recimo v velikem hadronskem trkalniku v evropskem laboratoriju za fiziko delcev v Ženevi, kjer bi pri zelo visokih energijah trkov med protoni tvorili tudi take delce, za katere verjamemo, da so relativno težki. Druga možnost je, da opazimo njihov vpliv na procese pri nižjih energijah, za kar pa je treba te procese izmeriti z do zdaj nepredstavljivo natančnostjo, da opazimo ta majhen učinek teh do zdaj neopaženih delcev. Ta pristop uporabljamo oziroma ga nameravamo uporabiti v eksperimentu na Japonskem.
Če smo prav prešteli, trenutno poznamo 61 osnovnih delcev. Se ne zdi nenavadno, da bi bilo osnovno nadstropje narave tako zapleteno? Je upati, da je kje nižje še bolj osnovna raven, na kateri bi bilo le nekaj še osnovnejših gradnikov?
Število delcev, ki jih danes štejemo za osnovne – pa dam osnovne v narekovaje, recimo nedeljive – je manjše, rekel bi sedemnajst, če sem pravilno preštel. Seveda ima vsak od teh delcev lahko le različne lastnosti, a to še ni razlog, da bi ga potem šteli za drugačen osnovni delec. Imate pa povsem prav, standardni model kot teorija, ki jo danes sprejemamo kot opis osnovnih sil med delci, ima veliko pomanjkljivosti. Ena izmed teh bi lahko bila, da je število osnovnih delcev preveliko. Pa to ni tista največja pomanjkljivost, zaradi katere nas večina znanstvenikov meni, da standardni model ni končna teorija vsega, če tako rečem. Stari Grki so verjeli, da je svet sestavljen iz ognja, vode, zemlje in zraka. Več stoletij pozneje je Mendelejev postavil periodni sistem elementov in izkazalo se je, da tudi atomi v tem periodnem sistemu niso nedeljivi, niso osnovni delci. Danes vemo, da so atomska jedra sestavljena iz protonov in nevtronov, pa tudi protoni in nevtroni se naprej delijo oziroma so sestavljeni iz kvarkov. Z drugimi besedami, zavedati se moramo, da je naše razumevanje, kaj je osnovna sestava snovi, pogojeno z eksperimentalnimi možnostmi, ki so nam na voljo. Trenutno uporabljamo najmočnejše mikroskope, mikroskope v narekovajih, to so pospeševalniki delcev in pri do zdaj dosegljivih energijah nam omogočajo vpogled v sestavne dele snovi, ki so veliki recimo deset na minus petnajsto metra. Seveda ni nikjer zagotovila, da pri še bolj zmogljivih eksperimentalnih napravah ne bi nekoč ugotovili, da so tudi tisti delci, ki jih danes štejemo za nesestavljene, v resnici strukturirani, da imajo sestavo. Dejstvo pa je, da dandanes vsi eksperimentalni dokazi, ki so na voljo, kažejo na to, da so ti delci, ki jih danes imenujemo osnovni delci, nesestavljeni. Sklepati o čemer koli drugem brez podlage eksperimentalnih dejstev je pa seveda stvar filozofije oziroma subjektivnega pristopa k naravi.
Z novim detektorjem, ki bo začel zajemati podatke v prihodnjih letih, bo mogoče odkrivati stvari z desetkrat večjo natančnostjo, kot je bilo mogoče do zdaj. Bi lahko te raziskave spremenile naš pogled na svet?
Raziskave, ki jih opravljamo ne samo na ravni recimo eksperimentalne fizike osnovnih delcev ali katere druge fizike, lahko do neke mere močno spremenijo naš pogled na svet. Poglejmo v zgodovino: razvoj kvantne mehanike je, najsi se tega zavedamo ali ne, močno spremenil človeški pogled na življenje in na svet okoli nas. Če nekoliko karikiram, možnosti obstajajo oziroma obstajajo teorije, ki pravijo, da ne živimo v prostoru, ki je sestavljen iz treh prostorskih dimenzij in ene časovne, ampak da živimo v prostoru, ki ima veliko več dimenzij, pa jih ne opazimo. To si lahko predstavljamo tako, kot da bi bili mravlje na listu papirja. Mravlja se pomika gor in dol v dveh dimenzijah, pa se pravzaprav ne zaveda, da živi v prostoru, ki je sestavljen iz treh dimenzij. To bi bilo verjetno precej spremenjeno gledanje na svet, v katerem živimo, in drugačno razumevanje tega sveta.
Delaš, se trudiš, da boš pred dopustom storil vse, kar moraš, končno odideš iz pisarne, ugasneš luč, odzdraviš kolegom in v glavi snuješ načrte za dopust. Pakiraš, se voziš na morje, potem pa kar naenkrat bolečine v mišicah, smrkanje, morda celo vročina. Znano? Marsikomu verjetno res. Preddopustniška Frekvenca X se torej odpravlja na teren tako imenovane bolezni prostočasja. Zakaj se zgodi, da pogosto zbolimo ravno takrat, ko naj bi se imeli fino. Torej - na dopustu.
Predzadnja Frekvenca X v letošnji sezoni se tik pred poletno vročino poglablja v namakalne sisteme. Prav ti so bili osnova, na kateri so med drugim zrasle antične civilizacije, od Kitajske do Egipta, hkrati pa so tudi danes marsikje osnova kmetijstva. V Grčiji, Italiji in Španiji na primer namakajo skoraj polovico kmetijskih površin, Slovenija pa le en odstotek. Kakšen je razlog, kako je z vodo in še marsikaj zanimivega, je o namakalnih sistemih izvedela Maja Ratej.
Po siloviti eksploziji in porušitvi jezu Nova Kahovka, ki je v južni Ukrajini na reki Dneper zadrževal 19 kubičnih kilometrov ali za skoraj pet Tržaških zalivov vode, so obsežni deli pokrajine še vedno poplavljeni, več deset tisoč ljudi pa razseljenih. V tokratni Frekvenci X pri strokovnjakih za visoke vodne pregrade preverjamo, kako zahteven gradbeni podvig so jezovi in katere porušitve jezov so odmevale v zgodovini. Posvetimo pa se tudi nekaterim največjim orjakom med jezovi na svetu.
Uživanje na glasbenih koncertih ima svoje čare, občutka avtentične interakcije ne more nadomestiti nobena tehnologija. Živi glasbeni performansi nas močno pritegnejo, tako pri nastopajočih kot pri publiki sprožijo posebne občutke. Kaj se takrat dogaja v naših možganih, kako na nas vpliva učinek množice, kakšni muzikološki momenti nas prepričajo in zakaj je ubiranje “izštekanih” poti tako privlačno.
V prvi junijski Frekvenci X se oziramo v maj, ko je odmevalo rojstvo otroka, ki nosi DNK treh oseb. Pri dveh pomembnih svetovnih študijah so sodelovali tudi slovenski znanstveniki – v prvi o proteinu FUS, ki je eden od ključnih dejavnikov za nastanek frontotemporalne demence, v drugi pa o tem, da lahko ženske prekinejo hormonsko terapijo pri zdravljenju raka dojk z namenom zanositve in po porodu spet nadaljujejo z njo. Spoznamo tudi aktualnega mentorja leta, gostujoča urednica in gostja pa je tokrat dr. Saša Novak, komunikatorica znanosti 2022 in gonilno srce projekta Znanost na cesti, ki že deset let povezuje javnost z znanostjo.
Povzetek okrogle mize na Filozofski fakulteti v Ljubljani v organizaciji Znanosti na cesti in Frekvence X. ChatGPT je kot jezikovni model že osvojil jezikovne bravure človeškega sporazumevanja in prebral nesluteno količino vsega, kar se skriva na svetovnem spletu, a strokovnjake vse bolj bega, simptom česa je brbotanje umetne inteligence v globinah. Ne gre le za vprašanja, katere poklice in dejavnosti vse bo umetna inteligenca v prihodnosti nadomestila, nadgradila, olajšala ali izpodrinila ter kako nam bo v pomoč na skoraj vseh področjih, pač pa za negotovost, česa vsega bo še sposobna, a se nam o tem danes še sanja ne. Kako bo zakoličila prihodnost in kako se bomo v novih okoliščinah znašli mi, ljudje? Kaj bo z vrednotami modrosti, učenja in intelektualnega napredka, v kakšno valuto se bo prelevilo znanje in kako se bo na to pripravil izobraževalni sistem?
Celoten posnetek okrogle mize na Filozofski fakulteti v Ljubljani v organizaciji Znanosti na cesti in Frekvence X.
Ste vedeli, da so lahko geni zelo zgovoren vodnik po davni zgodovini? No, vsaj postali so, zdaj, ko jih zmoremo neznansko hitro in učinkovito odčitavati. V samo nekaj letih so raziskovalci na tem področju prečesali 20 000 pradavnih genomov in odkrili marsikaj presenetljivega o naši davni preteklosti.
Vloga mrtvih v življenju posameznikov v sodobni družbi in Povojne tranzicije v perspektivi spola – primer severovzhodnega jadranskega prostora sta dve raziskovalni temi, ki so ju izbrali pri prestižnem projektu Evropskega raziskovalnega sveta ERC. Omenjena glavna evropska organizacija s financiranjem pomaga vrhunskim znanstvenikom pri raziskovanju določene teme, ki v znanstvenem svetu še ni bila obravnavana. Za svojo originalnost sta bili nagrajeni profesorica Mirjam Mencej z oddelka za etnologijo in kulturno antropologijo in profesorica Marta Verginella z oddelka za zgodovino, obe delujeta na ljubljanski filozofski fakulteti. Govorita o tem, kakšen raziskovalni zagon jima je dal projekt, kaj pravzaprav raziskujeta in kako težko je pridobiti financiranje projekta ERC.
V tretjem delu serije Kmetijstvo prihodnosti se prepričamo, da krave in roboti zelo dobro sobivajo in sodelujejo. V moderni živinoreji je raba robotskih sesalnikov gnoja in molznih robotov zelo napredovala, živali se bolje počutijo, manjši pa je tudi okoljski vpliv. Glede živinoreje ostaja odprtih več vprašanj: kako močno v resnici reja živali obremenjuje okolje, kaj bi lahko dosegli s spremembo prehranjevalnih navad in ali prihodnost prinaša umetno meso? Ob koncu tudi izdelamo zrezek s 3D-tiskanjem.
V drugem delu serije Kmetijstvo prihodnosti se sprašujemo, kako se spreminjajo načini pridelovanja zelenjave. Sprehodimo se po enem najmodernejših rastlinjakov v Sloveniji, kjer rast desettisočev glav solat nadzoruje umetna inteligenca in kjer so pogoji za rast natančno določeni. Razmišljamo o tem, kje je smiselno postavljati rastlinjake in kako moramo spreminjati bolj klasične postopke talne rasti, hkrati pa ugotavljamo, ali so urbane vertikalne farme le modna muha ali tehnologija prihodnosti. Poskusimo pa tudi vesoljski paradižnik.
Začenjamo z novo serijo, ki smo jo poimenovali kar Kmetijstvo prihodnosti. Na področju pridelave hrane nas čaka mnogo izzivov - hitra rast svetovnega prebivalstva pomeni vse večje potrebe po hrani, hkrati pa podnebne spremembe in z njimi povezani vremenski ekstremi vse bolj otežujejo pridelavo.
V marčevskem znanstvenem pregledu je v središču naše pozornosti tema, ki v negotovost postavlja številne znanstvenike. Tehnologije umetne inteligence presenečajo s svojimi zmogljivostmi. Program ChatGPT je zmožen na podlagi uporabnikovega vprašanja ali trditve avtomatsko generirati smiseln odgovor. Znanje, ki si ga je program nabral prek strojnega učenja, pretvarja v preproste odgovore, daljše tekste, eseje ali celo povzetke znanstvenih tekstov. Preverimo tudi izplen konference o vodi, ki so jo po dolgem času organizirali Združeni narodi. Spoznamo prejemnike nekaterih nagrad, ki so jih v znanosti podelili v prvem pomladnem mesecu, in rezultate, ki jih je pokazala nova analiza odpadnih voda pri nas. Na tujem pogledujemo k japonskim znanstvenikom in odkritju na asteroidu Ryugu in preverjamo, kako lahko streznimo pijane miši.
Že vrsto let smo priča spreminjanju središč mest, ki se predvsem kaže v načrtnem spreminjanju prebivalstva središč iz nižjega v višje sloje. To se načrtno dogaja v Ljubljani, temu pa se ne morejo izogniti niti obalna mesta. Tam gre predvsem za prilagajanje ponudbe izključno turistom ali pa celo, da se stanovanja v historičnih delih mest prodajajo tako imenovanim vikendašem, kar pomeni, da je poleti predvsem na obalnih predelih velika obremenitev, pozimi pa so to mesta duhov. Eno takšnih primerov je mesto Piran - na vseprisotnost turistične gentrifikacije so nas opozorili dijaki gimnazije z italijanskim učnim jezikom Antonia Seme v Portorožu, zato se je Frekvenca X tokrat odpravila na terensko debato na Obalo.
V sodelovanju z oddajo Možgani na dlani raziskujemo zakaj in kako kletvice nastanejo, kaj se dogaja v možganih, kakšna je moč preklinjanja, zakaj je lahko tudi koristno, pa tudi kdaj so kletvice posledica bolezenskega stanja.
Hitro se "prilepijo" na naše možgane in že kot otrokom nam dajo vedeti, da preklinjanje res ni lepo! Psovke, zmerljivke in kletvice vseh vrst imajo močno vlogo v družbi, lahko izražajo različna emotivna stanja in seveda lahko globoko ranijo in prizadanejo. Nam lahko kletvice tudi pomagajo? Kakšen je njihov analgetski učinek, zakaj nosijo v sebi takšno moč in kaj se z možgani dogaja takrat, ko preklinjamo, ne da bi želeli? V posluh ponujamo prav posebno epizodo oddaje Možgani na dlani, ki sta jo ob Tednu možganov pripravila Luka Hvalc (Val202) in Mojca Delač (Prvi). Frekvenca X in Možgani na dlani družno o besedah, ki niso samo odraz dandanašnje družbe. Je bilo v Trubarjevih časih kaj drugače? Preverimo!
Globalno segrevanje povzroči, da človeka pred mikroorganizmi ne ščiti več telesna temperatura. To izkoristijo glive iz rodu cordyceps. Človeka okužijo, nad njim prevzamejo nadzor in ga spremenijo v krvoločnega zombija, ki okužbo širi z grizenjem.
Februar je na znanstvenem področju prinesel kar nekaj novih prebojev in zanimivih znanstvenih tem. V pregledu najkrajšega meseca se v Frekvenci X sprašujemo o prvih znanstvenih dognanjih, do katerih smo prišli po pol leta opazovanja vesolja z vesoljskim teleskopom James Webb, o povečani aktivnosti Sonca, nepričakovano javno izpostavljenih vremenskih balonih in rekordno majhnem obsegu antarktičnega ledu. Ob pregledu ostalih novic pa se sprašujemo tudi, kako je možno, da so polarni sij lahko februarja opazovali tudi v Franciji?
Najbrž ga ni, ki ga ne bi posnetki iz popotresne Turčije pustili brezbrižnega, še bolj tesnobno nam je najbrž ob misli, skozi kaj morajo preživeli po potresu zdaj, ko so cele regije praktično v razsulu. Ko narava pokaže svojo moč, se šele zavemo, kako šibki smo. Temu sledi vprašanje, ali smo res storili vse, da se pred najhujšimi posledicami zavarujemo? V Turčiji je odgovor jasen: ne. In enak bi bil, če bi si podobno vprašanje zastavili v Sloveniji. Kaj pomeni, da te strese magnituda 7,8 in kaj bi rušilen potres povzročil pri nas? Kako strogi so potresni standardi za potresno projektiranje pri nas in v Evropi?
V znamenju kulturnega praznika raziskujemo, če lahko med poezijo in znanostjo narišemo vzporednice. Na prvi pogled se zdi, da ne. Poezija govori o občutkih, znanost pa so trdna dejstva. A vendar skupaj, z ramo ob rami, delujeta vse od antike pa do danes, ko računalniško generirane pesmi piše gospa umetna inteligenca. Kako se je preplet obeh ved spreminjal skozi čas, kaj so bile teme, ki jih je poezija o znanosti in z znanostjo najpogosteje tematizirala?
Neveljaven email naslov