Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Fizika čarobnih kvarkov

18.06.2015

Tokrat smo se spustili v najnižje nadstropje narave, med njene osnovne gradnike. Gostili smo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožef Štefan v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Tsukubi raziskuje doslej neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki. Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je bil gost v Frekvenci X na Valu 202.

Spustili smo se v najnižje nadstropje narave, med njene osnovne gradnike. Gostimo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožefa Stefana v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Cukubi raziskuje do zdaj neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki.

Detektor Belle ob razgradnji

foto: Osebni arhiv

Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev, iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je gost  Frekvence X.

INTERVJU

Poganjanje tako zapletenih poskusov premika meje v fiziki, inženirstvu, računalništvu in celo menedžmentu. Gotovo to lahko ilustrirate s kakšnim zanimivim primerom?

Res je. V pospeševalnikih in detektorjih delcev se dandanes uporabljajo nove tehnologije, pogosto še nepreverjene, ki pa čez čas precej pogosto najdejo aplikativno vrednost na drugih področjih, denimo v medicini in drugje. Recimo za veliki hadronski trkalnik, ki deluje v Ženevi, so za superprevodne magnete uporabili zelo tanke žičke iz niobija in titana, vsaka od njih je tanjša od človeškega lasu. Če bi vse te žičke postavili drugo za drugo, bi jih bilo za šest razdalj do Sonca in nazaj. Enake oziroma podobne superprevodne magnete bodo uporabljali tudi v fuzijskem reaktorju ITER, za katerega človeštvo upa, da bo odgovoril na vprašanje preskrbe z energijo za naslednje stoletje in še dlje.

Mogoče nekoliko bolj zabavna zgodba: pred  časom, no, že kar pred nekaj leti, ko smo po poletnem remontu skušali zagnati trkalnik LEP – to je bil trkalnik, ki je deloval v istem podzemnem predoru, kot dandanes deluje veliki hadronski trkalnik – nam nikakor ni uspelo pospešiti žarkov do želenih energij. V trenutku, ko so se delci znašli v tem pospeševalniku, so na določenem delu izginili. Po nekaj dneh ugotavljanja, kaj bi lahko bilo narobe, ni bilo druge rešitve, kot da spet ustavimo pospeševalnik in pošljemo tehnike pogledat, kaj se dogaja. Ko so pospeševalnik odprli na mestu, kjer so se delci izgubljali, so našli prazno steklenico pijače, ki jo je eden od prejšnjih tehnikov pustil tam. To nam seveda potrjuje, da je vsa tehnologija še vedno odvisna od človeškega dela.

Naj dam kot primer: skupina znanstvenikov, ki je zbrana okoli detektorja Atlas na velikem hadronskem trkalniku, je sestavljena iz ljudi s prav vseh celin,  razen z Antarktike, kar dobesedno pomeni, da ta eksperiment nikoli ne spi, saj je v vsakem trenutku na Zemlji nekaj članov te skupine, torej imajo dan, da lahko pomagajo pri obratovanju tega pospeševalnika. Tehnologija oziroma načini za zagotavljanje delovanja teh zapletenih naprav so tako dejansko odvisni od zelo usklajenega dela tisočerih znanstvenikov v taki skupini.

V minulega pol stoletja ste fiziki odkrili vrsto osnovnih delcev, ki razložijo naravo treh  osnovnih sil v naravi. Tem delcem pripisujete zanimive lastnosti, kot so barva, čudnost, celo lepota, čar in okus. Se ti pojmi povezujejo s kakšnimi preprostimi pravili, ki nam povedo, kaj je v naravi dovoljeno in kaj ne?

Vsi ti pojmi, ki jih omenjate, označujejo različne lastnosti teh osnovnih delcev, za katere smo si izmislili res nekoliko čudna poimenovanja. Te lastnosti osnovnih delcev pa so povezane z načinom, kako med seboj interagirajo ali po domače povedano, kakšne sile med seboj občutijo. Te sile seveda vodijo v nekatere dovoljene ali nedovoljene primere v naravi, ki pa niso povsem preprosti. Naj dam primer: omenili ste barvo. Kvarki, ki sestavljajo recimo protone, ti so gradniki atomskih jeder, nosijo različne barve. Vendar kvarki, ki sestavljajo protone, morajo imeti vedno tako barvo, da če bi zmešali te barve, bi dobili belo barvo. Drugačni kvarki ne morejo sestavljati protona in drugih težjih delcev. Pri tem se je treba seveda zavedati, da je barva v tem primeru samo poimenovanje oziroma celo metafora za neko lastnost teh osnovnih delcev. V resnici seveda ti kvarki niso pobarvani z različnimi barvami. Čarobnost je tudi lastnost ene od vrst izmed šestih kvarkov, ki jih poznamo. Drugi imajo še druge čudne lastnosti, ki jih poimenujemo lepota in tako naprej.

Je torej poimenovanje le posledica trenutnega navdiha  ljudi, ki so odkrili določene lastnosti?

Že sama beseda kvarki izhaja iz knjige Jamesa Joyca in sama po sebi, kot je že Joyce nekoč rekel, ne pomeni nič. V tem smislu torej ne smemo razumeti dobesedno teh lastnosti, kot strokovno pravimo, kvantnih števil, da so določeni kvarki res čarobni, imajo pa določeno lastnost, ki ji rečemo čarobnost.

Profesor Golob, vrsto let že sodelujete v eksperimentu KEK na Japonskem. Kako lahko te raziskave pripomorejo k izpopolnitvi naše slike o osnovnih delcih in interakcijah v naravi?

Konkretno z eksperimentom, pri katerem sodelujem na Japonskem, merimo posebno lastnost, eno izmed osnovnih sil – imenujemo jo šibka sila –, ki je nekoliko drugačna od drugih sil v smislu, da če vse delce zamenjamo z antidelci, potem se izkaže, da lastnosti te sile niso več povsem enake. Po drugi strani je močna sila, elektromagnetna sila, ki jo poznamo tudi iz vsakdanjega življenja, simetrična na tako zamenjavo. Ta drobna asimetrija, če tako rečem, pa ima pri šibki interakciji gromozanske posledice. Posledica tega je namreč, da je naše celotno vesolje sestavljeno iz snovi, ne iz antisnovi, se pravi iz delcev in ne iz antidelcev. Torej so v razvoju vesolja zaradi te lastnosti te sile tako rekoč vsa antisnov oziroma antidelci v razvoju vesolja izginili, se anihirali, kot temu rečemo, ostali pa so samo delci. Če se nekoliko pošalim, je ta drobna lastnost te interakcije odgovorna za to, da smo ljudje, ne pa antiljudje. Po drugi strani je pa res, da ko opravimo podrobnejše izračune, ugotovimo, da je ta asimetrija, opazna na ravni subatomskih delcev, še vedno premajhna, da bi razložila tako rekoč popolno prevlado snovi nad antisnovjo v vesolju. Iz tega sklepamo, da morajo obstajati doslej neznani delci in procesi, ki to asimetrijo ojačajo. Seveda je naša želja, da bi te nove procese, nove delce odkrili.


Zadnje čase se veliko govori o odkritju še neznanega delca, iz katerega naj bi bila temna snov, ki je v vesolju v večini. Kaj poleg odkritja tega delca še manjka naši trenutni standardni sliki subatomskega sveta?

 Da, približno pet odstotkov vesolja, kot danes vemo, sestavlja snov, taka, kot jo poznamo, približno 25 % vesolja sestavlja tako imenovana temna snov, 70 % vesolja pa tako imenovana temna energija. Kaj pomeni pridevnik temna v izrazu temna snov? To pomeni, da ne interagira oziroma ne sodeluje z drugo snovjo s pomočjo šibke, elektromagnetne močne interakcije na enak način kot snov, ki nam je znana. Občuti pa gravitacijsko interakcijo in zato pravzaprav vemo, da temna snov obstaja. Seveda je temna snov pojem, ki ga skušamo razumeti, se pravi, da skušamo ugotoviti, iz česa je sestavljena. Pred časom smo upali, verjeli, da bi lahko bila sestavljena iz nevtrinov, to so delci, ki jih dandanes dokaj dobro poznamo, poznamo njihove lastnosti. No, izkazalo se je, da je gostota nevtrinov v vesolju premajhna, da bi ti sestavljali to temno snov. Potem pa pridemo počasi v škripce. Trenutna teorija osnovnih sil med delci, ki je eksperimentalno zelo dobro preverjena  in jo imenujemo standardni model, namreč ne vsebuje drugih delcev, ki bi glede na svoje lastnosti lahko bili kandidati za to, da sestavljajo temno snov. Seveda obstajajo druge teorije, na primer supersimetrične teorije, ki pa predvidevajo obstoj drugih delcev, ki za zdaj niso še eksperimentalno potrjeni in med njimi je kar nekaj kandidatov, ki bi lahko sestavljali temno snov. Načinov možnega odkritja takih delcev je več: ena možnost je recimo v velikem hadronskem trkalniku v evropskem laboratoriju za fiziko delcev v Ženevi, kjer bi pri zelo visokih energijah trkov med protoni tvorili tudi take delce, za katere verjamemo, da so relativno težki. Druga možnost je, da opazimo njihov vpliv na procese pri nižjih energijah, za kar pa je treba te procese izmeriti z do zdaj nepredstavljivo natančnostjo, da opazimo ta majhen učinek teh do zdaj neopaženih delcev. Ta pristop uporabljamo oziroma ga nameravamo uporabiti v eksperimentu na Japonskem.

Če smo prav prešteli, trenutno poznamo 61 osnovnih delcev. Se ne zdi nenavadno, da bi bilo osnovno nadstropje narave tako zapleteno? Je upati, da je kje nižje še bolj osnovna raven, na kateri bi bilo le nekaj še osnovnejših gradnikov?

 Število delcev, ki jih danes štejemo za osnovne – pa dam osnovne v narekovaje, recimo nedeljive – je manjše, rekel bi sedemnajst, če sem pravilno preštel. Seveda ima vsak od teh delcev lahko le različne lastnosti, a to še ni razlog, da bi ga potem šteli za drugačen osnovni delec. Imate pa povsem prav, standardni model kot teorija, ki jo danes sprejemamo kot opis osnovnih sil med delci, ima veliko pomanjkljivosti. Ena izmed teh bi lahko bila, da je število osnovnih delcev preveliko. Pa to ni tista največja pomanjkljivost, zaradi katere nas večina znanstvenikov meni, da standardni model ni končna teorija vsega, če tako rečem. Stari Grki so verjeli, da je svet sestavljen iz ognja, vode, zemlje in zraka. Več stoletij pozneje je Mendelejev postavil periodni sistem elementov in izkazalo se je, da tudi atomi v tem periodnem sistemu niso nedeljivi, niso osnovni delci. Danes vemo, da so atomska jedra sestavljena iz protonov in nevtronov, pa tudi protoni in nevtroni se naprej delijo oziroma so sestavljeni iz kvarkov. Z drugimi besedami, zavedati se moramo, da je naše razumevanje, kaj je osnovna sestava snovi, pogojeno z eksperimentalnimi možnostmi, ki so nam na voljo. Trenutno uporabljamo najmočnejše mikroskope, mikroskope v narekovajih, to so pospeševalniki delcev in pri do zdaj dosegljivih energijah nam omogočajo vpogled v sestavne dele snovi, ki so veliki recimo deset na minus petnajsto metra. Seveda ni nikjer zagotovila, da pri še bolj zmogljivih eksperimentalnih napravah ne bi nekoč ugotovili, da so tudi tisti delci, ki jih danes štejemo za nesestavljene,  v resnici strukturirani, da imajo sestavo. Dejstvo pa je, da dandanes vsi eksperimentalni dokazi, ki so na voljo, kažejo na to, da so ti delci, ki jih danes imenujemo osnovni delci, nesestavljeni. Sklepati o čemer koli drugem brez podlage eksperimentalnih dejstev je pa seveda stvar filozofije  oziroma subjektivnega pristopa k naravi.

Z novim detektorjem, ki bo začel zajemati podatke v prihodnjih letih, bo mogoče odkrivati stvari z desetkrat večjo natančnostjo, kot je bilo mogoče do zdaj. Bi lahko te raziskave spremenile naš pogled na svet?

Raziskave, ki jih opravljamo ne samo na ravni recimo eksperimentalne fizike osnovnih delcev ali katere druge fizike, lahko do neke mere močno spremenijo naš pogled na svet. Poglejmo  v zgodovino: razvoj kvantne mehanike je, najsi se tega zavedamo ali ne, močno spremenil človeški pogled na življenje in na svet okoli nas. Če nekoliko karikiram, možnosti obstajajo  oziroma obstajajo teorije, ki pravijo, da ne živimo v prostoru, ki je sestavljen iz treh prostorskih dimenzij in ene časovne, ampak da živimo v prostoru, ki ima veliko več dimenzij, pa jih ne opazimo. To si lahko predstavljamo tako, kot da bi bili mravlje na listu papirja. Mravlja se pomika gor in dol v dveh dimenzijah, pa se pravzaprav ne zaveda, da živi v prostoru, ki je sestavljen iz treh dimenzij. To bi bilo verjetno precej spremenjeno gledanje na svet, v katerem živimo, in drugačno razumevanje tega sveta.

 


Frekvenca X

688 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Fizika čarobnih kvarkov

18.06.2015

Tokrat smo se spustili v najnižje nadstropje narave, med njene osnovne gradnike. Gostili smo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožef Štefan v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Tsukubi raziskuje doslej neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki. Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je bil gost v Frekvenci X na Valu 202.

Spustili smo se v najnižje nadstropje narave, med njene osnovne gradnike. Gostimo profesorja Boštjana Goloba s Fakultete za matematiko in fiziko in Inštituta Jožefa Stefana v Ljubljani, ki je eden vodilnih znanstvenikov v fiziki osnovnih delcev. S kolegi na velikem pospeševalniku elektronov in pozitronov v japonski Cukubi raziskuje do zdaj neznane procese in delce, kot so na primer supersimetrični delci. Več let je vodil raziskave delcev, ki jih sestavljajo čarobni kvarki.

Detektor Belle ob razgradnji

foto: Osebni arhiv

Prepričan je, da bomo prišli do nepričakovanih odkritij, morda neznanih delcev, iz katerih je temna snov, ki jo je v vesolju veliko več kot običajne snovi, iz katere smo ljudje, Zemlja in zvezde. Prof. dr. Boštjan Golob je gost  Frekvence X.

INTERVJU

Poganjanje tako zapletenih poskusov premika meje v fiziki, inženirstvu, računalništvu in celo menedžmentu. Gotovo to lahko ilustrirate s kakšnim zanimivim primerom?

Res je. V pospeševalnikih in detektorjih delcev se dandanes uporabljajo nove tehnologije, pogosto še nepreverjene, ki pa čez čas precej pogosto najdejo aplikativno vrednost na drugih področjih, denimo v medicini in drugje. Recimo za veliki hadronski trkalnik, ki deluje v Ženevi, so za superprevodne magnete uporabili zelo tanke žičke iz niobija in titana, vsaka od njih je tanjša od človeškega lasu. Če bi vse te žičke postavili drugo za drugo, bi jih bilo za šest razdalj do Sonca in nazaj. Enake oziroma podobne superprevodne magnete bodo uporabljali tudi v fuzijskem reaktorju ITER, za katerega človeštvo upa, da bo odgovoril na vprašanje preskrbe z energijo za naslednje stoletje in še dlje.

Mogoče nekoliko bolj zabavna zgodba: pred  časom, no, že kar pred nekaj leti, ko smo po poletnem remontu skušali zagnati trkalnik LEP – to je bil trkalnik, ki je deloval v istem podzemnem predoru, kot dandanes deluje veliki hadronski trkalnik – nam nikakor ni uspelo pospešiti žarkov do želenih energij. V trenutku, ko so se delci znašli v tem pospeševalniku, so na določenem delu izginili. Po nekaj dneh ugotavljanja, kaj bi lahko bilo narobe, ni bilo druge rešitve, kot da spet ustavimo pospeševalnik in pošljemo tehnike pogledat, kaj se dogaja. Ko so pospeševalnik odprli na mestu, kjer so se delci izgubljali, so našli prazno steklenico pijače, ki jo je eden od prejšnjih tehnikov pustil tam. To nam seveda potrjuje, da je vsa tehnologija še vedno odvisna od človeškega dela.

Naj dam kot primer: skupina znanstvenikov, ki je zbrana okoli detektorja Atlas na velikem hadronskem trkalniku, je sestavljena iz ljudi s prav vseh celin,  razen z Antarktike, kar dobesedno pomeni, da ta eksperiment nikoli ne spi, saj je v vsakem trenutku na Zemlji nekaj članov te skupine, torej imajo dan, da lahko pomagajo pri obratovanju tega pospeševalnika. Tehnologija oziroma načini za zagotavljanje delovanja teh zapletenih naprav so tako dejansko odvisni od zelo usklajenega dela tisočerih znanstvenikov v taki skupini.

V minulega pol stoletja ste fiziki odkrili vrsto osnovnih delcev, ki razložijo naravo treh  osnovnih sil v naravi. Tem delcem pripisujete zanimive lastnosti, kot so barva, čudnost, celo lepota, čar in okus. Se ti pojmi povezujejo s kakšnimi preprostimi pravili, ki nam povedo, kaj je v naravi dovoljeno in kaj ne?

Vsi ti pojmi, ki jih omenjate, označujejo različne lastnosti teh osnovnih delcev, za katere smo si izmislili res nekoliko čudna poimenovanja. Te lastnosti osnovnih delcev pa so povezane z načinom, kako med seboj interagirajo ali po domače povedano, kakšne sile med seboj občutijo. Te sile seveda vodijo v nekatere dovoljene ali nedovoljene primere v naravi, ki pa niso povsem preprosti. Naj dam primer: omenili ste barvo. Kvarki, ki sestavljajo recimo protone, ti so gradniki atomskih jeder, nosijo različne barve. Vendar kvarki, ki sestavljajo protone, morajo imeti vedno tako barvo, da če bi zmešali te barve, bi dobili belo barvo. Drugačni kvarki ne morejo sestavljati protona in drugih težjih delcev. Pri tem se je treba seveda zavedati, da je barva v tem primeru samo poimenovanje oziroma celo metafora za neko lastnost teh osnovnih delcev. V resnici seveda ti kvarki niso pobarvani z različnimi barvami. Čarobnost je tudi lastnost ene od vrst izmed šestih kvarkov, ki jih poznamo. Drugi imajo še druge čudne lastnosti, ki jih poimenujemo lepota in tako naprej.

Je torej poimenovanje le posledica trenutnega navdiha  ljudi, ki so odkrili določene lastnosti?

Že sama beseda kvarki izhaja iz knjige Jamesa Joyca in sama po sebi, kot je že Joyce nekoč rekel, ne pomeni nič. V tem smislu torej ne smemo razumeti dobesedno teh lastnosti, kot strokovno pravimo, kvantnih števil, da so določeni kvarki res čarobni, imajo pa določeno lastnost, ki ji rečemo čarobnost.

Profesor Golob, vrsto let že sodelujete v eksperimentu KEK na Japonskem. Kako lahko te raziskave pripomorejo k izpopolnitvi naše slike o osnovnih delcih in interakcijah v naravi?

Konkretno z eksperimentom, pri katerem sodelujem na Japonskem, merimo posebno lastnost, eno izmed osnovnih sil – imenujemo jo šibka sila –, ki je nekoliko drugačna od drugih sil v smislu, da če vse delce zamenjamo z antidelci, potem se izkaže, da lastnosti te sile niso več povsem enake. Po drugi strani je močna sila, elektromagnetna sila, ki jo poznamo tudi iz vsakdanjega življenja, simetrična na tako zamenjavo. Ta drobna asimetrija, če tako rečem, pa ima pri šibki interakciji gromozanske posledice. Posledica tega je namreč, da je naše celotno vesolje sestavljeno iz snovi, ne iz antisnovi, se pravi iz delcev in ne iz antidelcev. Torej so v razvoju vesolja zaradi te lastnosti te sile tako rekoč vsa antisnov oziroma antidelci v razvoju vesolja izginili, se anihirali, kot temu rečemo, ostali pa so samo delci. Če se nekoliko pošalim, je ta drobna lastnost te interakcije odgovorna za to, da smo ljudje, ne pa antiljudje. Po drugi strani je pa res, da ko opravimo podrobnejše izračune, ugotovimo, da je ta asimetrija, opazna na ravni subatomskih delcev, še vedno premajhna, da bi razložila tako rekoč popolno prevlado snovi nad antisnovjo v vesolju. Iz tega sklepamo, da morajo obstajati doslej neznani delci in procesi, ki to asimetrijo ojačajo. Seveda je naša želja, da bi te nove procese, nove delce odkrili.


Zadnje čase se veliko govori o odkritju še neznanega delca, iz katerega naj bi bila temna snov, ki je v vesolju v večini. Kaj poleg odkritja tega delca še manjka naši trenutni standardni sliki subatomskega sveta?

 Da, približno pet odstotkov vesolja, kot danes vemo, sestavlja snov, taka, kot jo poznamo, približno 25 % vesolja sestavlja tako imenovana temna snov, 70 % vesolja pa tako imenovana temna energija. Kaj pomeni pridevnik temna v izrazu temna snov? To pomeni, da ne interagira oziroma ne sodeluje z drugo snovjo s pomočjo šibke, elektromagnetne močne interakcije na enak način kot snov, ki nam je znana. Občuti pa gravitacijsko interakcijo in zato pravzaprav vemo, da temna snov obstaja. Seveda je temna snov pojem, ki ga skušamo razumeti, se pravi, da skušamo ugotoviti, iz česa je sestavljena. Pred časom smo upali, verjeli, da bi lahko bila sestavljena iz nevtrinov, to so delci, ki jih dandanes dokaj dobro poznamo, poznamo njihove lastnosti. No, izkazalo se je, da je gostota nevtrinov v vesolju premajhna, da bi ti sestavljali to temno snov. Potem pa pridemo počasi v škripce. Trenutna teorija osnovnih sil med delci, ki je eksperimentalno zelo dobro preverjena  in jo imenujemo standardni model, namreč ne vsebuje drugih delcev, ki bi glede na svoje lastnosti lahko bili kandidati za to, da sestavljajo temno snov. Seveda obstajajo druge teorije, na primer supersimetrične teorije, ki pa predvidevajo obstoj drugih delcev, ki za zdaj niso še eksperimentalno potrjeni in med njimi je kar nekaj kandidatov, ki bi lahko sestavljali temno snov. Načinov možnega odkritja takih delcev je več: ena možnost je recimo v velikem hadronskem trkalniku v evropskem laboratoriju za fiziko delcev v Ženevi, kjer bi pri zelo visokih energijah trkov med protoni tvorili tudi take delce, za katere verjamemo, da so relativno težki. Druga možnost je, da opazimo njihov vpliv na procese pri nižjih energijah, za kar pa je treba te procese izmeriti z do zdaj nepredstavljivo natančnostjo, da opazimo ta majhen učinek teh do zdaj neopaženih delcev. Ta pristop uporabljamo oziroma ga nameravamo uporabiti v eksperimentu na Japonskem.

Če smo prav prešteli, trenutno poznamo 61 osnovnih delcev. Se ne zdi nenavadno, da bi bilo osnovno nadstropje narave tako zapleteno? Je upati, da je kje nižje še bolj osnovna raven, na kateri bi bilo le nekaj še osnovnejših gradnikov?

 Število delcev, ki jih danes štejemo za osnovne – pa dam osnovne v narekovaje, recimo nedeljive – je manjše, rekel bi sedemnajst, če sem pravilno preštel. Seveda ima vsak od teh delcev lahko le različne lastnosti, a to še ni razlog, da bi ga potem šteli za drugačen osnovni delec. Imate pa povsem prav, standardni model kot teorija, ki jo danes sprejemamo kot opis osnovnih sil med delci, ima veliko pomanjkljivosti. Ena izmed teh bi lahko bila, da je število osnovnih delcev preveliko. Pa to ni tista največja pomanjkljivost, zaradi katere nas večina znanstvenikov meni, da standardni model ni končna teorija vsega, če tako rečem. Stari Grki so verjeli, da je svet sestavljen iz ognja, vode, zemlje in zraka. Več stoletij pozneje je Mendelejev postavil periodni sistem elementov in izkazalo se je, da tudi atomi v tem periodnem sistemu niso nedeljivi, niso osnovni delci. Danes vemo, da so atomska jedra sestavljena iz protonov in nevtronov, pa tudi protoni in nevtroni se naprej delijo oziroma so sestavljeni iz kvarkov. Z drugimi besedami, zavedati se moramo, da je naše razumevanje, kaj je osnovna sestava snovi, pogojeno z eksperimentalnimi možnostmi, ki so nam na voljo. Trenutno uporabljamo najmočnejše mikroskope, mikroskope v narekovajih, to so pospeševalniki delcev in pri do zdaj dosegljivih energijah nam omogočajo vpogled v sestavne dele snovi, ki so veliki recimo deset na minus petnajsto metra. Seveda ni nikjer zagotovila, da pri še bolj zmogljivih eksperimentalnih napravah ne bi nekoč ugotovili, da so tudi tisti delci, ki jih danes štejemo za nesestavljene,  v resnici strukturirani, da imajo sestavo. Dejstvo pa je, da dandanes vsi eksperimentalni dokazi, ki so na voljo, kažejo na to, da so ti delci, ki jih danes imenujemo osnovni delci, nesestavljeni. Sklepati o čemer koli drugem brez podlage eksperimentalnih dejstev je pa seveda stvar filozofije  oziroma subjektivnega pristopa k naravi.

Z novim detektorjem, ki bo začel zajemati podatke v prihodnjih letih, bo mogoče odkrivati stvari z desetkrat večjo natančnostjo, kot je bilo mogoče do zdaj. Bi lahko te raziskave spremenile naš pogled na svet?

Raziskave, ki jih opravljamo ne samo na ravni recimo eksperimentalne fizike osnovnih delcev ali katere druge fizike, lahko do neke mere močno spremenijo naš pogled na svet. Poglejmo  v zgodovino: razvoj kvantne mehanike je, najsi se tega zavedamo ali ne, močno spremenil človeški pogled na življenje in na svet okoli nas. Če nekoliko karikiram, možnosti obstajajo  oziroma obstajajo teorije, ki pravijo, da ne živimo v prostoru, ki je sestavljen iz treh prostorskih dimenzij in ene časovne, ampak da živimo v prostoru, ki ima veliko več dimenzij, pa jih ne opazimo. To si lahko predstavljamo tako, kot da bi bili mravlje na listu papirja. Mravlja se pomika gor in dol v dveh dimenzijah, pa se pravzaprav ne zaveda, da živi v prostoru, ki je sestavljen iz treh dimenzij. To bi bilo verjetno precej spremenjeno gledanje na svet, v katerem živimo, in drugačno razumevanje tega sveta.

 


25.03.2021

Na valovih odnosov: V digitalnem svetu nihče ni otok

Na kakšnih preizkušnjah so naši možgani in zakaj smo utrujeni od številnih virtualnih interakcij? Kakšna je vloga umetne inteligence in kje lahko nadgradi človeško?


17.03.2021

Na valovih odnosov: Ekstremne razmere

Kako in zakaj se odzivamo v ekstremnih razmerah? Kakšni mehanizmi se sprožajo v možganih? Kako je s stresom in kaj v odnose prinese adrenalin?


11.03.2021

Na valovih odnosov: Realnost pod maskami

Kako nošnja zaščitnih mask vpliva na odnose med ljudmi, kako so se spremenili naši mehanizmi spoznavanja in prepoznavanja? So se naši možgani privadili mask, se jih bodo tudi odvadili?


04.03.2021

Vznik življenja se ni zgodil samo enkrat, ampak večkrat na več krajih

Prof. Lewis Dartnell, avtor knjige Izvori, astrobiolog in komunikator znanosti o tem, kako je naš planet oblikoval človeško zgodovino.


25.02.2021

Skrivnosti prav posebnih zvezd, ki jim pravimo magnetarji

Nedavno je Nasini misiji Fermi LAT uspelo odkriti izbruh te nevtronske zvezde v bližnji galaksiji.


18.02.2021

Astrofotografija za telebane

Tokratno Frekvenco X bi lahko naslovili Fotografski vodnik po galaksiji ali pa kar Astrofotografija za telebane, prvi del. Skupaj se bomo učili o tem, kako potovati po vesolju kar z domačega balkona ali s strehe. Svoje iznajdljive in predvsem zelo cenovno dostopne astrofotografske rešitve bo z nami delil angleški astrofizik Rory Griffin.


11.02.2021

Zatiskanje oči pred izumiranjem

Kako se spopadati z zanikanjem izgube biotske raznovrstnosti*


04.02.2021

Kvantna prihodnost 3/3: Varne komunikacije in nevaren nadzor

Kvantne tehnologije prinašajo mnoge prednosti, a tudi nova etična vprašanja in potencialne nevarnosti. Zaradi njih bomo morali spremeniti številne družbene podsisteme.


28.01.2021

Kvantna prihodnost 2/3: Teleportacija? Tudi to je mogoče!

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


21.01.2021

Kvantna prihodnost 1/3: Prvi koraki do kvantne premoči

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


14.01.2021

V iskanju superprevodnikov, tehnološkega svetega grala

Kaj so superprevodniki, kaj z njimi zmoremo že danes in kaj si lahko z njihovo izpopolnitvijo obetamo? Kličemo tudi enega od avtorjev študije, ki so jo lani uvrstili med ključne znanstvene preboje leta?


07.01.2021

Skrivnosti pod ledom

Pod ledom se skrivajo skrivnosti, ki govorijo o človeški zgodovini in morda tudi prihodnjih pandemijah. A kako dolgo bodo še zaklenjene v led?


30.12.2020

Znanost v letu 2020: Od koronavirusa, vesolja do okoljskih alarmov

Znanost je v letu 2020 prišla izrazito v ospredje. Tja jo je potisnila pandemija, ki je zahtevala znanstvene odgovore in rešitve za ključni zdravstveni problem tega trenutka. Brez dvoma je koronavirus določal prioritete tudi v znanstvenem raziskovanju in hkrati sprožil nekaj velikih sprememb na tem področju. Pa vendar je bilo pestro tudi dogajanje na drugih znanstvenih področjih. V pregledu znanosti v letu 2020 nam bodo Maja Ratej (Val 202), Aljoša Masten (MMC) in Nina Slaček (Prvi in Ars) poleg osrednjih tem – koronavirusa, vesolja ter podnebno-ekološke krize – v pogovoru nanizali tudi prgišče drugih pomembnih prebojev z različnih znanstvenih področij.


30.12.2020

Fizik Jurij Bajc: Tako močnih potresov po svetu letno ni veliko

Po rušilnem potresu na Hrvaškem smo za nekaj pojasnil prosili fizika dr. Jurija Bajca s Pedagoške fakultete v Ljubljani, ki se ukvarja tudi s področjem potresov. Kot pravi, takšni rušilni potresi s tolikšno magnitudo letno na svetu niso pogosti, zgodi se jih le kakšnih sto, na našem območju pa je bila z njim v zadnjem stoletju primerljiva le peščica potresnih sunkov. Za kakšno sproščeno moč je šlo pri tokratnem tresenju tal južno od Zagreba, je tako številčno zaporedje potresov na Balkanu nekaj izrednega ali prej pričakovanega in kakšne potrese sploh imamo na Balkanu, posledica česa so, bo pojasnil na razumljiv in poljuden način. Foto: Bobo


24.12.2020

Božiček pod znanstvenim povečevalnim steklom

Frekvenca X se na predbožični dan odpravlja na potovanje okoli sveta. Ne sama, ampak z Božičkom, njegovimi škrati in seveda z našimi znanstveniki (če seveda pustimo dvom o Božičku ob strani in se prepustimo domišljiji). Skupaj bomo poskušali razvozlati, kako dobremu možu v rdečo-beli opravi, z dolgo belo brado in brki vsako leto uspe pravočasno obdarovati vse otroke in koliko kalorij Božiček pridobi, če v vsaki hiši poje en piškot. Na tej (dolgi) poti pa se bomo ustavili tudi pri božičnem drevescu in preverili, kakšen je evolucijski namen iglic. Ste pripravljeni odkleniti skrivnosti Božičkove znanosti? Če je odgovor da, potem le prisluhnite tokrat praznični Frekvenci X.


17.12.2020

Zaslepljeni od koronakrize pozabljamo na okoljsko

V letu 2020 je veliko pozornosti na področju znanosti prestregel pohod koronavirusa, a v ozadju se pripravlja veliko hujša in bolj dolgoročna nevarnost – okoljska kriza. Zadnji meseci so nam izstavili nove okoljske opomine: od katastrofalnih požarov, velikih orkanov, do tega, da se morska gladina pospešeno dviguje, ledeni pokrov nad Arktiko pa nezadržno krči. Sogovornika klimatologinja dr. Lučka Kajfež Bogat in biokemik dr. Tom Turk opozarjata, da ni več časa za sprenevedanje in da je treba ključne sistemske odločitve začeti sprejemati zdaj. Kmalu bodo namreč spremembe postale nepovratne. V oddaji bomo prelistali tudi odmevno knjigo Davida Attenborougha Življenje na našem planetu – z njo in istoimenskim dokumentarcem je jeseni glasno opozoril, da se je svet znašel v na moč nezavidljivi situaciji in da bomo morali po boju s koronakrizo pokazati še več solidarnosti v soočanju s krizo, ki pesti okolje.


03.12.2020

Misija Gaia: Naša galaksija dobiva rokovski prizvok

Misija Gaia Evropske vesoljske agencija z osupljivo natačnostjo meri velikost naše galaksije in vsega vesolja. Aktualni podatki kažejo na veliko razburkanost in nihanja v naši galaksiji, prof. dr. Tomaž Zwitter pravi, da dogajanje dobiva rokovski prizvok. Komentiramo objavo tretje različice kataloga astronomskih meritev misije Gaia, ki skupaj obsega kar 1,8 milijarde zvezd, njena natančnost pa je primerljiva z merjenjem debeline človeškega lasu čez Atlantik. Za projekt skrbi 500 znanstvenikov, pri obdelavi podatkov imajo pomembno vlogo tudi slovenski strokovnjaki.


26.11.2020

Cepiva in mi: Tekma, kakršne ne pomnimo

Na potovanju po svetu cepiv se bomo v zadnji epizodi serije Cepiva in mi ustavili pri aktualni tekmi, kdo bo prvi priskrbel varno in dovolj učinkovito cepivo proti covidu-19. Evropska komisija je pogodbo o dobavi za zdaj podpisala s šestimi proizvajalci, po najbolj optimističnem scenariju pa naj bi cepiva na evropski trg prišla januarja. Do njih bodo najprej upravičene najranljivejše družbene skupine, o vsem povezanim s cepivom pa bo na voljo tudi namenska aplikacija. V oddaji spoznavamo tudi, kakšen je postopek produkcije cepiva v tovarni in kako cepivo pristojni regulatorni organi sploh registrirajo. Preverili smo tudi, kako bo z njegovo pravično globalno redistribucijo in zagotavljanjem ustreznega transporta, pomudili pa smo se tudi na borzah, kjer so dobre novice o aktualnem cepivu močno prevetrile negativno razpoloženje.


19.11.2020

Cepiva in mi: Fascinantno potovanje do sodobnih cepiv

Potem ko smo v prvem delu miniserije 'Cepiva in mi' cepljenje spoznavali iz zgodovinske perspektive, se bomo v drugem delu spustili na raven molekularne biologije. Cepiva so v zadnjih desetletjih tako izpopolnili, da vse bolje posnemajo delovanje imunskega sistema. O tem pričajo nove vrste cepiv, do katerih se lahko dokopljemo bliskovito; včasih so za to potrebovali desetletja. Kako delujejo cepiva, iz časa so in kako jih dandanes lahko razvijejo tako hitro? Odgovore bomo iskali v novi Frekvenci X.


12.11.2020

Cepiva in mi: Poldruga milijarda življenj!

V tednu, ko so smo dobili prve oprijemljive rezultate o učinkovitosti kandidata za cepivo proti covidu-19, se na Valu 202 obširneje podajamo v svet cepiv. Človek zelo osnovne oblike cepljenja uporablja že več kot tisočletje, raketni pospešek pa je prinesel razvoj mikrobiologije. Cepljenje je v zadnjih 200 letih rešilo do milijardo in pol življenj, v zadnjih letih pa tehnologija razvoja cepiv dobiva še dodaten pospešek. Potem ko so včasih na cepivo čakali po več desetletij, so danes za to potrebni le meseci. O razvoju cepiv, odnosu človeka do cepljenja in o tem, kako cepiva pravzaprav nastanejo, bomo na Valu govorili v okviru posebne miniserije Frekvence X. Cepiva in mi – v vseh preostalih novembrskih četrtkih ob 12h.


Stran 9 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov