Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Super ure. Patrick Gill (NPL)

29.03.2012


Malokdo se zaveda, da sodobni način življenja iz ozadja tiho usmerjajo supernatančne atomske ure, ki so eden najbolj izjemnih dosežkov znanosti in tehnologije. Tako natančno, kot znamo danes meriti čas, verjetno ne zmoremo izmeriti skoraj ničesar drugega.

Revolucija v izdelavi izjemno točnih ur se je začela v drugi polovici prejšnjega stoletja, ko so znanstveniki odkrili, kako je mogoče ob pomoči atomov izredno natančno meriti čas. Leta 1955 je britanski fizik Louis Essen izdelal prvo zanesljivo atomsko uro, ki je zamujala samo eno sekundo na 300 let.

Seveda so kmalu potem atomske ure s svojo nepremagljivo točnostjo postane nov standard v merjenju časa. Naš svet je začel utripati v ritmu atomov. Pri atomskih urah so vlogo mehaničnih nihal, ki odštevajo čas v običajnih urah, prevzeli elektroni, ki v enakomernih časovnih utripih spreminjajo položaj v atomu. Z merjenjem tega plesa elektronov je mogoče osupljivo natančno določiti tiktakanje časa.

Leta 1967 so tako znanstveniki na novo opredelili sekundo kot 9.192.631.770 period sevanja, ki ustrezajo prehodu med hiperfinima ravnema osnovnega stanja atoma cezij-133«. V naslednjih desetletjih so neutrudno izboljševali natančnost atomske ure. Ta se dandanes zmoti samo za kakšno sekundo na reci in piši nekaj milijonov let.

Srce sodobnih atomskih ur so cezijevi atomi, ohlajeni na supernizko temperaturo. In njihova natančnost res ni od muh. Trenutno najbolj točna ura na svetu, imenuje se NPL CsF2, je v britanskem Nacionalnem fizikalnem laboratoriju na robu Londona in se zmoti za manj kot sekundo v nepredstavljivih 138 milijonih let. Zdi se prav neverjetno, da lahko znanstveniki dandanes zgradijo tako točno in dovršeno napravo.

Kakih 200 podobno natančnih atomskih ur v 50 različnih državah skupaj določa mednarodni atomski čas, na podlagi katerega poteka koordinirani univerzalni čas, ki se uporablja za civilno merjenje časa. Kadar koli si nastavite uro, ki vam prehiteva, nazaj na pravilen čas, ki ga predvajajo na primer po radiu, vedite, da ta izvira iz atomskih ur.

Izjemna natančnost sodobnih atomskih ur ni samo lepotnega pomena, ampak je bistvena za brezhibno delovanje našega sveta. Na te ure se zanašajo delovanje interneta, sistemov GPS, oddajanje radijskih in televizijskih valov, bančne transakcije in še kaj bi se našlo. Brez popolnoma točnih ur današnji način življenja tako rekoč ne bi bil možen.

A čeprav so raziskovalci z atomskimi urami dosegli zavidljivo stopnjo natančnosti, nikakor niso prenehali iskati in izdelovati še boljših in točnejših. Leta 2001 so v ameriškem Nacionalnem institutu standardov in tehnologije razvili tako imenovane optične atomske ure, ki so še natančnejše od klasičnih cezijevih atomskih ur. Pravzaprav je supernatančne zanje preskromna beseda.

Ultrasupernatančne optične atomske ure bi lahko namreč podrle vse meje v predstavah o tem, kako točno lahko izmerimo čas. Leta 2010 so isti raziskovalci zgradili prototip optične ure, ki zaostaja ali pridobi le sekundo na osupljivih 3,7 milijarde let. Če bi tako uro zagnali ob začetku vesolja oziroma ob velikem poku, bi do danes zamujala samo 4 sekunde.

Strokovnjaki napovedujejo, da bodo optične ure v naslednjih letih nadomestile trenutne atomske, čeprav si navadni ljudje verjetno težko predstavljajo, zakaj bi potrebovali ure, ki zamujajo le sekundo na nekaj milijard let, ko pa že imamo take, ki zamujajo sekundo na sto milijonov let. Ampak tudi optične atomske ure niso zadnja domislica merilcev časa. Zadnja leta se pojavljajo ideje o še boljših urah. Med take sodijo tako imenovane jedrske in kvantne ure.

Leta 2011 so ameriški fiziki s tehnološkega inštituta v Georgiji izračunali, da bi jedrska ura na podlagi elementa torija zamujala samo sekundo v 200 milijardah let. Pri tem se že poraja vprašanje, ali bo naše vesolje sploh obstajalo toliko časa. Vsekakor se nam torej ni treba bati, da bi zaradi nenatančnih ur v življenju lahko izgubili kakšno sekundo.

INTERVJU:
Prof. Patrick Gill je eden najbolj vrhunskih časomerilcev na svetu. Dela v britanskem laboratoriju za fiziko, kjer skrbi tudi za eno najbolj natančnih super atomskih ur na planetu.

Profesor Gill, kje na svetu trenutno tiktaka najbolj točna atomska ura in kako natančna je?

Situacija je trenutno takšna, da določeno število t. i. nacionalnih standardnih laboratorijev v različnih državah upravlja set najnatančnejših atomskih ur. To so t.i. fontanske cezijeve atomske ure. Zdaj  jih deluje okrog sedem ali osem, nameščene pa so v ZDA, Veliki Britaniji, Franciji, Nemčiji, Italiji in Japonski. Poleg teh ur imajo v mnogih državah še druge, manj natančne atomske ure. Te fontanske cezijeve atomske ure smo razvijali zadnjih 20 let in najboljše lahko merijo čas z zaostankom ene sekunde na 60 milijonov let ali več.

Bi bilo sodobno življenje sploh mogoče brez teh super ur? Zakaj je pomembno, da ura zaostane samo za eno sekundo na nekaj milijonov let?

Da, ena sekunda na 60 milijonov let res ni čas, ki bi se nas dotikal, saj nas zanimajo mnogo krajši intervali – na primer  en dan. Vendar pa obstajajo aplikacije, ki se zanašajo na takšno natančnost. Na najosnovnejšm koncu denimo želiva vedeti, koliko je ura, vendar samo do kakšne minute natančno. Malo večjo natančnost potrebujejo v športu, za kako milisekundo. Še višje so finančne institucije, saj želijo pri borznem poslovanju veliko točnost. Potem je pomembna natančnost pri distribuciji električne energije – to je zahteven časovni problem, zato so pomembne  mikrosekunde. Še dlje pa so satelitska navigacija in naprave v avtomobilih ali telefonih  – zanašajo se na atomske ure v satelitih. Najvišjo natančnost pri merjenju časa pa potrebujejo v visoki znanosti, recimo v sodobni astronomiji, kozmologiji in drugih temeljnih znanstvenih vedah.

Kako zahtevno pa je narediti takšno atomsko uro in koliko približno stane?

Manj natančne atomske ure je mogoče tudi kupiti, za recimo kakih deset tisoč dolarjev. Kupiti je mogoče tudi atomske ure velikosti kosa mila. Če pa govorimo o vrhunskih primarnih standardih, se pravi fontanskih cezijevih atomskih urah – te so  visoke približno 2 metra, v njih sta ultra vakuum in oblak cezijevih atomov, ki so z laserji ohlajeni na okrog -273 stopinj.

Znanstveniki bi radi naredili še natančnejše atomske ure. Kako natančne ure pa je mogoče narediti oziroma kakšne super ure bomo imeli v prihodnosti. In zakaj potrebujemo še natančnejše ure? Ali je res pomembno zaostajanje za eno sekundo v nekaj deset milijonih let ali v nekaj sto milijonih let?

Da, človeku na ulici za to ni mar, v visoki znanosti – kozmologiji, osnovni fiziki in podbno pa je pomembno, izboljšanje natančnosti pri merjenju časa. Torej je to uporabno za visoko znanost, vendar pa ljudje vedno najdejo tudi način za  prilagoditev za bolj tehnološke potrebe. Dober primer tega iz preteklosti je nastanek globalnega navigacijskega sistema GPS, ki so ga  omogočile atomske ure. Kar zadeva izboljšanje natančnosti, pa bi lahko točnost atomskih ure s pomočjo laserske tehnologije trenutno izboljšali še za okrog 100-krat.


Frekvenca X

694 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Super ure. Patrick Gill (NPL)

29.03.2012


Malokdo se zaveda, da sodobni način življenja iz ozadja tiho usmerjajo supernatančne atomske ure, ki so eden najbolj izjemnih dosežkov znanosti in tehnologije. Tako natančno, kot znamo danes meriti čas, verjetno ne zmoremo izmeriti skoraj ničesar drugega.

Revolucija v izdelavi izjemno točnih ur se je začela v drugi polovici prejšnjega stoletja, ko so znanstveniki odkrili, kako je mogoče ob pomoči atomov izredno natančno meriti čas. Leta 1955 je britanski fizik Louis Essen izdelal prvo zanesljivo atomsko uro, ki je zamujala samo eno sekundo na 300 let.

Seveda so kmalu potem atomske ure s svojo nepremagljivo točnostjo postane nov standard v merjenju časa. Naš svet je začel utripati v ritmu atomov. Pri atomskih urah so vlogo mehaničnih nihal, ki odštevajo čas v običajnih urah, prevzeli elektroni, ki v enakomernih časovnih utripih spreminjajo položaj v atomu. Z merjenjem tega plesa elektronov je mogoče osupljivo natančno določiti tiktakanje časa.

Leta 1967 so tako znanstveniki na novo opredelili sekundo kot 9.192.631.770 period sevanja, ki ustrezajo prehodu med hiperfinima ravnema osnovnega stanja atoma cezij-133«. V naslednjih desetletjih so neutrudno izboljševali natančnost atomske ure. Ta se dandanes zmoti samo za kakšno sekundo na reci in piši nekaj milijonov let.

Srce sodobnih atomskih ur so cezijevi atomi, ohlajeni na supernizko temperaturo. In njihova natančnost res ni od muh. Trenutno najbolj točna ura na svetu, imenuje se NPL CsF2, je v britanskem Nacionalnem fizikalnem laboratoriju na robu Londona in se zmoti za manj kot sekundo v nepredstavljivih 138 milijonih let. Zdi se prav neverjetno, da lahko znanstveniki dandanes zgradijo tako točno in dovršeno napravo.

Kakih 200 podobno natančnih atomskih ur v 50 različnih državah skupaj določa mednarodni atomski čas, na podlagi katerega poteka koordinirani univerzalni čas, ki se uporablja za civilno merjenje časa. Kadar koli si nastavite uro, ki vam prehiteva, nazaj na pravilen čas, ki ga predvajajo na primer po radiu, vedite, da ta izvira iz atomskih ur.

Izjemna natančnost sodobnih atomskih ur ni samo lepotnega pomena, ampak je bistvena za brezhibno delovanje našega sveta. Na te ure se zanašajo delovanje interneta, sistemov GPS, oddajanje radijskih in televizijskih valov, bančne transakcije in še kaj bi se našlo. Brez popolnoma točnih ur današnji način življenja tako rekoč ne bi bil možen.

A čeprav so raziskovalci z atomskimi urami dosegli zavidljivo stopnjo natančnosti, nikakor niso prenehali iskati in izdelovati še boljših in točnejših. Leta 2001 so v ameriškem Nacionalnem institutu standardov in tehnologije razvili tako imenovane optične atomske ure, ki so še natančnejše od klasičnih cezijevih atomskih ur. Pravzaprav je supernatančne zanje preskromna beseda.

Ultrasupernatančne optične atomske ure bi lahko namreč podrle vse meje v predstavah o tem, kako točno lahko izmerimo čas. Leta 2010 so isti raziskovalci zgradili prototip optične ure, ki zaostaja ali pridobi le sekundo na osupljivih 3,7 milijarde let. Če bi tako uro zagnali ob začetku vesolja oziroma ob velikem poku, bi do danes zamujala samo 4 sekunde.

Strokovnjaki napovedujejo, da bodo optične ure v naslednjih letih nadomestile trenutne atomske, čeprav si navadni ljudje verjetno težko predstavljajo, zakaj bi potrebovali ure, ki zamujajo le sekundo na nekaj milijard let, ko pa že imamo take, ki zamujajo sekundo na sto milijonov let. Ampak tudi optične atomske ure niso zadnja domislica merilcev časa. Zadnja leta se pojavljajo ideje o še boljših urah. Med take sodijo tako imenovane jedrske in kvantne ure.

Leta 2011 so ameriški fiziki s tehnološkega inštituta v Georgiji izračunali, da bi jedrska ura na podlagi elementa torija zamujala samo sekundo v 200 milijardah let. Pri tem se že poraja vprašanje, ali bo naše vesolje sploh obstajalo toliko časa. Vsekakor se nam torej ni treba bati, da bi zaradi nenatančnih ur v življenju lahko izgubili kakšno sekundo.

INTERVJU:
Prof. Patrick Gill je eden najbolj vrhunskih časomerilcev na svetu. Dela v britanskem laboratoriju za fiziko, kjer skrbi tudi za eno najbolj natančnih super atomskih ur na planetu.

Profesor Gill, kje na svetu trenutno tiktaka najbolj točna atomska ura in kako natančna je?

Situacija je trenutno takšna, da določeno število t. i. nacionalnih standardnih laboratorijev v različnih državah upravlja set najnatančnejših atomskih ur. To so t.i. fontanske cezijeve atomske ure. Zdaj  jih deluje okrog sedem ali osem, nameščene pa so v ZDA, Veliki Britaniji, Franciji, Nemčiji, Italiji in Japonski. Poleg teh ur imajo v mnogih državah še druge, manj natančne atomske ure. Te fontanske cezijeve atomske ure smo razvijali zadnjih 20 let in najboljše lahko merijo čas z zaostankom ene sekunde na 60 milijonov let ali več.

Bi bilo sodobno življenje sploh mogoče brez teh super ur? Zakaj je pomembno, da ura zaostane samo za eno sekundo na nekaj milijonov let?

Da, ena sekunda na 60 milijonov let res ni čas, ki bi se nas dotikal, saj nas zanimajo mnogo krajši intervali – na primer  en dan. Vendar pa obstajajo aplikacije, ki se zanašajo na takšno natančnost. Na najosnovnejšm koncu denimo želiva vedeti, koliko je ura, vendar samo do kakšne minute natančno. Malo večjo natančnost potrebujejo v športu, za kako milisekundo. Še višje so finančne institucije, saj želijo pri borznem poslovanju veliko točnost. Potem je pomembna natančnost pri distribuciji električne energije – to je zahteven časovni problem, zato so pomembne  mikrosekunde. Še dlje pa so satelitska navigacija in naprave v avtomobilih ali telefonih  – zanašajo se na atomske ure v satelitih. Najvišjo natančnost pri merjenju časa pa potrebujejo v visoki znanosti, recimo v sodobni astronomiji, kozmologiji in drugih temeljnih znanstvenih vedah.

Kako zahtevno pa je narediti takšno atomsko uro in koliko približno stane?

Manj natančne atomske ure je mogoče tudi kupiti, za recimo kakih deset tisoč dolarjev. Kupiti je mogoče tudi atomske ure velikosti kosa mila. Če pa govorimo o vrhunskih primarnih standardih, se pravi fontanskih cezijevih atomskih urah – te so  visoke približno 2 metra, v njih sta ultra vakuum in oblak cezijevih atomov, ki so z laserji ohlajeni na okrog -273 stopinj.

Znanstveniki bi radi naredili še natančnejše atomske ure. Kako natančne ure pa je mogoče narediti oziroma kakšne super ure bomo imeli v prihodnosti. In zakaj potrebujemo še natančnejše ure? Ali je res pomembno zaostajanje za eno sekundo v nekaj deset milijonih let ali v nekaj sto milijonih let?

Da, človeku na ulici za to ni mar, v visoki znanosti – kozmologiji, osnovni fiziki in podbno pa je pomembno, izboljšanje natančnosti pri merjenju časa. Torej je to uporabno za visoko znanost, vendar pa ljudje vedno najdejo tudi način za  prilagoditev za bolj tehnološke potrebe. Dober primer tega iz preteklosti je nastanek globalnega navigacijskega sistema GPS, ki so ga  omogočile atomske ure. Kar zadeva izboljšanje natančnosti, pa bi lahko točnost atomskih ure s pomočjo laserske tehnologije trenutno izboljšali še za okrog 100-krat.


31.03.2016

Roboti ne bodo razumeli politike

"Roboti ne bodo nikoli razumeli politike!" Misel direktorja IJS dr. Jadrana Lenarčiča je dobro izhodišče za realen premislek o robotski prihodnosti. Bo ta humanoidna ali predvsem tehnološka? Bodo roboti res bolj spretni in inteligentni od ljudi? Na Evropskem robotskem forumu 2016 smo se pogovarjali z uglednima gostoma prof. Brunom Sicilianom in dr. Markusom Grebensteinom.


24.03.2016

Psihologija prejemanja nagrad

So nagrade prestiž ali breme? Koliko posamezniku pomeni, da je za svoje delo nagrajen in kako zelo nagrada vpliva na njegovo nadaljnje delo? Je lahko nagrada pozitivna spodbuda za naprej ali je kdaj za posameznika tudi ovira, saj se po prejetju priznanja od njega pričakuje še več? Ker se evforija po smučarskih skokih v Planici še ni polegla, so nas tokrat zanimale športne nagrade, pa ne samo to. Spraševali smo se, kako stresno je tekmovati za stopničke, kako to občuti športnik in kako to pojasnjuje psiholog, v katerem starostnem obdobju najbolj cenimo nagrade oziroma kdaj si jih najbolj želimo?


10.03.2016

Zemlja iz vesolja

Z doktorjem Michaelom Fehringerjem z Evropske vesoljske agencije se bomo pogovarjali o Zemljini težnosti, biomasi in oceanskih tokovih, dr. Matjaž Ličer z Morske biološke postaje Nacionalnega inštituta za biologijo pa bo predstavil, kaj novega smo se naučili o tokovih v našem Jadranu.


10.03.2016

Zemlja iz vesolja

Z doktorjem Michaelom Fehringerjem z Evropske vesoljske agencije se bomo pogovarjali o Zemljini težnosti, biomasi in oceanskih tokovih, dr. Matjaž Ličer z Morske biološke postaje Nacionalnega inštituta za biologijo pa bo predstavil, kaj novega smo se naučili o tokovih v našem Jadranu.


03.03.2016

Novinci v periodnem sistemu elementov

Mednarodna zveza za čisto in uporabno kemijo ali krajše IUAPAC [júpak] je v začetku leta razglasila, da so odkrili štiri nove kemijske elemente. Periodni sistem, ki ga je večina spoznala v osnovni šoli in z njim v srednji šoli tudi za zmeraj prekinila stike, pa je s tem zapolnil vrzeli. A ker v svetu atomov nič ni, kot se zdi, v tokratni Frekvenci raziskujemo, čemu koristijo nestabilni elementi, kaj sploh pomeni odkriti nek element, zakaj novinci še lep čas ne bodo imeli svojih imen in kdo neki je ukradel kurčatovij.


25.02.2016

Skrivnost vzpona in zatona Iskre Delte

Bi lahko v Sloveniji danes imeli svojo Nokio? Morda, računalniško podjetje Iskra Delta je bilo pred 30 leti v svetovnem vrhu razvoja informacijskih tehnologij, sredi Ljubljane so razvijali zametek kitajskega interneta, avtomatizirali so tovarne, izdelovali priljubljena osebna računalnika Partner in Triglav. V nikoli povsem pojasnjenih okoliščinah so razpeti med interesi politike in tajnih služb tik pred osamosvojitvijo propadli. Z nekaterimi akterji raziskujemo tehnološka in politična ozadja hitrega vzpona in zatona Iskre Delte.


18.02.2016

Gravitacijski valovi odpirajo novo okno vesolja

Pred kratkim je svet kot blisk obkrožila novica, da je znanstvenikom projekta LIGO uspelo prvič neposredno zaznati gravitacijske valove. Gre za še eno od potrditev Einsteinove vizije vesolja v splošni teoriji relativnosti. Kaj so pravzaprav odkrili znanstveniki in zakaj je odkritje tako pomembno, pojasnjujeta prof. dr. Andrej Čadež in prof. dr. Tomaž Zwitter s Fakultete za matematiko in fiziko Univerze v Ljubljani.


11.02.2016

Revolucija v genetiki in obujen strah pred otroci po načrtu

Britanska državna bioetična komisija je januarja dala dovoljenje raziskovalni skupini pod vodstvom Kathy Niakan iz Instituta Francis Crick, da lahko začne opravljati genetske poskuse na človeških zarodkih. Čeprav pravijo, da bodo njene raziskave pomagale razumeti biologijo zgodnjega človeškega razvoja, se pojavlja vprašanje, ali so znanstveniki z genetskimi eksperimenti na človeških zarodkih in svojimi nadaljnjimi načrti dokončno prestopili mejo in odprli Pandorino skrinjico. Več o tako imenovani tehnologiji spreminjana genetskega materiala CRISPR, ki jo številni opisujejo za revolucionarno, v Frekvenci X.


04.02.2016

Tiki naši vsakdanji

Ukvarjali smo se s ponavljajočim se nenadzorovanimi trzljaji in kompleksnejšimi gibi, imenovanim tiki. Ob pomoči nevrologa in psihiatra smo se spustili v sivo območje med hotenimi in nehotenimi gibi ter po najboljših močeh pojasnili za zdaj slabo raziskan izvor tikov.


27.01.2016

Paradoks izbire

Težavnost izbire srečamo vsakokrat, ko stopimo v malo bolje založeno trgovino. Naš največji trgovec ima na primer v spletni trgovini 97 zobnih krem, 104 vrste sadnih jogurtov in 47 vrst kruha. To je veliko. No, sprehod po prodajalni čevljev in oblek, športne opreme ali računalnikov je podobno neobvladljiv. Police se šibijo pod stotinami različnih vrst izdelkov. Imeti na izbiro tri vrste zobne kreme je bolje kot imeti eno, toda 97 … Postane več kdaj preveč? In kako se odločamo pri izbiri partnerja, službe in ob drugih življenjskih prelomnicah? O paradoksu izbire razpravljamo z ameriškim psihologom dr. Barryjem Schwartzom in našo filozofinjo dr. Renato Salecl.


21.01.2016

Žive, strašljive, lucidne, zanimive … sanje

Sanje so včasih mistične, včasih skoraj realistične. V njih lahko postanemo živali, živimo v vzporednem vesolju, včasih se nam v sanjah tudi uresničijo sanje. Nekaj zelo skrivnostnega je v sanjah, da se z njimi ukvarjamo že stoletja, vsaka kultura na drugačen način, pa še vedno nismo našli skupnega odgovora na vprašanje – kaj sanje sploh pomenijo.


21.01.2016

Žive, strašljive, lucidne, zanimive … sanje

Sanje so včasih mistične, včasih skoraj realistične. V njih lahko postanemo živali, živimo v vzporednem vesolju, včasih se nam v sanjah tudi uresničijo sanje. Nekaj zelo skrivnostnega je v sanjah, da se z njimi ukvarjamo že stoletja, vsaka kultura na drugačen način, pa še vedno nismo našli skupnega odgovora na vprašanje – kaj sanje sploh pomenijo.


14.01.2016

Izzivi potovanja v vesolje

Najbrž ne bi pomislili, da imata kuhanje juhe v hribih in izstreljevanje satelitov v tirnico okoli Zemlje kaj skupnega. Gre za kavitacijo, ki povzroča težave v črpalkah raketnih motorjev in v turbinah elektrarn, ne prizanaša ne živalim niti rastlinam, vendar pa take implozije lahko obrnemo tudi nam v prid.


14.01.2016

Izzivi potovanja v vesolje

Najbrž ne bi pomislili, da imata kuhanje juhe v hribih in izstreljevanje satelitov v tirnico okoli Zemlje kaj skupnega. Gre za kavitacijo, ki povzroča težave v črpalkah raketnih motorjev in v turbinah elektrarn, ne prizanaša ne živalim niti rastlinam, vendar pa take implozije lahko obrnemo tudi nam v prid.


07.01.2016

Bo elektrika poganjala tudi potniška letala? Morda pa res

Področje razvoja električnih vozil in baterijskih sistemov zanje je na vrhuncu. Tudi Slovenci smo na področju razvoja tovrstnih akumulatorjev v svetovni raziskovalni špici. Baterijske sisteme prihodnosti in to, ali bodo lahko kmalu poganjali tudi potniška letala, razkrivamo ta četrtek po 11.45 v valovski oddaji Frekvenca X. Gosta: Dr. Robert Dominko, raziskovalec na Kemijskem inštitutu in Haresh Kamath, Electric Power Research Insitut, ameriška neprofitna R&D organizacija.


31.12.2015

Znanost v letu 2015

Voda na Marsu, bližnje srečanje s Plutonom, novi temperaturni rekordi, otroci s tremi starši, nevtrini, vrhunski svetovni fiziki v Ljubljani, nova vrsta človečnjaka … To je le nekaj asociacij na znanstveno leto 2015. Kaj so bila najprodornejša odkritja minulih 12 mesecev, katera so najbolj vroča raziskovalna področja in kaj je odmevalo znotraj naših meja, se spominjamo v posebni epizodi Frekvence X.


24.12.2015

Znanost ni slovenska prioriteta

Zakaj Slovenija vlaga v znanost in opremo manj kot v času Jugoslavije, kako je s pogoji dela in dosežki, kakšna je prihodnost slovenske znanosti in inovativnosti. Bo znanost kdaj naša prioriteta? Razmišljata dr. Vito Turk in dr. Martin Klanjšek.


10.12.2015

Podnebne spremembe

Medtem ko je podnebna znanost vse bolj prepričana v podnebne spremembe, zanikanje problema paradoksno narašča. Skepticizem je resda zdrava mera nezaupanja v prehitre sklepe. Skeptik hoče dokaze. A težava pri podnebnih spremembah in onesnaženem okolju na splošno je to, da je dokazov več kot dovolj. Gre bolj za zanikanje resnice, ki nam ni preveč všeč, ker ogroža naš trenutni način življenja.


03.12.2015

Moč nevednosti in negotovosti

Ljudje smo po naravi nagnjeni k temu, da poskušamo čim hitreje razrešiti negotovosti. Če smo v stresu, smo bistveno manj pripravljeni vztrajati pri odprtosti različnih možnosti. Strokovnjaki ugotavljajo, da se zaradi zatekanja k varnim odločitvam povečujejo tudi stereotipi do beguncev, teroristični napadi so vplivali na našo toleranco do sprejemanja alternativnih interpretacij dogajanja. Kako se soočati z negotovostjo in odprtostjo različnih možnosti raziskujemo v pogovorih z uglednim ameriškim socialnim psihologom Ariejem Kruglanskim, zdravnikom dr. Matjažem Zwittrom, statističarko Tino Žnidaršič in demografom dr. Janezom Malačičem.


26.11.2015

Prihodnost samovozečih vozil

Beremo časopis, rešujemo sudoku in brez slabe vesti telefoniramo. To je vožnja prihodnosti s samovozečimi avtomobili. Ti naj bi namreč bili naslednji stroj, ki bo nadomestil nekatera človeška dela in nam olajšal življenje. Vožnja po središčih mesta bi bila s takšnimi vozili manj stresna, avtomobil bi se samodejno odzival na ovire, poleg tega pa bi obstajala zmanjšana potreba po parkirnem prostoru, saj bi nas avtomobil odložil in se sam odpeljal domov.


Stran 20 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov